Managing a Switch Stack
173
and switch software, and propagates changes to the member units. To manage
a stack using the serial interface, you must connect to the stack master via the
connect
command or by physically connecting the cable to the stack master.
A second switch is designated as the standby unit, which becomes the master
if the stack master is unavailable. You can manually configure which unit is
selected as the standby, or the system can select the standby automatically.
When units are in a stack, the following activities occur:
• All units are checked for software version consistency.
• The switch Control Plane is active only on the master. The Control Plane
is a software layer that manages system and hardware configuration and
runs the network control protocols to set system configuration and state.
• The switch Data Plane is active on all units in the stack, including the
master. The Data Plane is the set of hardware components that forward
data packets without intervention from a control CPU.
• The running configuration is propagated to all units and the application
state is synchronized between the master and standby during normal
stacking operation. The startup configuration and backup configuration
on the stack members are not overwritten with the master switch
configuration.
Dell strongly recommends connecting the stack in a ring topology so that
each switch is connected to two other switches.
Connecting switches in a ring topology allows the stack to utilize the
redundant communication path to each switch. If a switch in a ring topology
fails, the stack can automatically establish a new communications path to the
other switches. Switches not stacked in a ring topology may split into multiple
independent stacks upon the failure of a single switch or stacking link.
Additional stacking connections can be made between adjacent switch units
to increase the stacking bandwidth, provided that all redundant stacking links
have the same bandwidth. It is strongly recommended that the stacking
bandwidth be kept equal across of all stacking connections; that is, avoid
mixing single and double stacking connections within a stack. Up to eight
redundant stacking links can be configured on a stacking unit (four in each
direction).
Figure 9-1 shows a stack with three switches as stack members connected in a
ring topology.
Содержание N2000 Series
Страница 50: ...50 Contents ...
Страница 54: ...54 Introduction ...
Страница 134: ...134 Using Dell OpenManage Switch Administrator ...
Страница 168: ...168 Setting Basic Network Information ...
Страница 206: ...206 Managing a Switch Stack ...
Страница 242: ...242 Configuring Authentication Authorization and Accounting ...
Страница 318: ...318 Managing General System Settings Figure 12 24 Verify MOTD ...
Страница 322: ...322 Managing General System Settings ...
Страница 344: ...344 Configuring SNMP Figure 13 18 Trap Logs Click Clear to delete all entries from the trap log ...
Страница 358: ...358 Configuring SNMP ...
Страница 388: ...388 Managing Images and Files ...
Страница 415: ...Monitoring Switch Traffic 415 Figure 16 2 sFlow Agent Summary ...
Страница 451: ...Monitoring Switch Traffic 451 5 On the Capture Options dialog click Manage Interfaces ...
Страница 458: ...458 Monitoring Switch Traffic ...
Страница 488: ...488 Configuring Port Characteristics Figure 18 3 Copy Port Settings 8 Click Apply ...
Страница 502: ...502 Configuring Port Characteristics ...
Страница 541: ...Configuring Port and System Security 541 Figure 19 12 Configure Port Security Settings 5 Click Apply ...
Страница 567: ...Configuring Port and System Security 567 Figure 19 38 Captive Portal Client Status ...
Страница 666: ...666 Configuring VLANs Figure 21 6 Add Ports to VLAN 4 Click Apply 5 Verify that the ports have been added to the VLAN ...
Страница 674: ...674 Configuring VLANs Figure 21 17 GVRP Port Parameters Table ...
Страница 680: ...680 Configuring VLANs Figure 21 24 Double VLAN Port Parameter Table ...
Страница 714: ...714 Configuring VLANs ...
Страница 737: ...Configuring the Spanning Tree Protocol 737 Figure 22 9 Spanning Tree Global Settings ...
Страница 760: ...760 Configuring the Spanning Tree Protocol ...
Страница 786: ...786 Discovering Network Devices ...
Страница 793: ...Configuring Port Based Traffic Control 793 Figure 24 3 Storm Control 5 Click Apply ...
Страница 878: ...878 Configuring Connectivity Fault Management ...
Страница 899: ...Snooping and Inspecting Traffic 899 Figure 27 17 DAI Interface Configuration Summary ...
Страница 903: ...Snooping and Inspecting Traffic 903 Figure 27 24 Dynamic ARP Inspection Statistics ...
Страница 924: ...924 Configuring Link Aggregation Figure 28 7 LAG Hash Summary ...
Страница 982: ...982 Configuring Link Aggregation ...
Страница 1062: ...1062 Configuring DHCP Server and Relay Settings ...
Страница 1096: ...1096 Configuring L2 and L3 Relay Features Figure 34 3 DHCP Relay Interface Summary ...
Страница 1200: ...1200 Configuring OSPF and OSPFv3 ...
Страница 1216: ...1216 Configuring RIP ...
Страница 1240: ...1240 Configuring VRRP ...
Страница 1284: ...1284 Configuring DHCPv6 Server and Relay Settings Relay Interface Number Vl100 Relay Remote ID Option Flags ...
Страница 1291: ...Configuring Differentiated Services 1291 Figure 40 5 DiffServ Class Criteria ...
Страница 1336: ...1336 Configuring Auto VoIP ...
Страница 1367: ...Managing IPv4 and IPv6 Multicast 1367 Figure 43 20 IGMP Cache Information ...
Страница 1422: ...1422 Managing IPv4 and IPv6 Multicast ...
Страница 1440: ...1440 System Process Definitions ...
Страница 1460: ...Index 1460 ...