Configuring IPv6 Routing
1263
IPv6 Static Reject and Discard Routes
A static configured route with a next-hop of “null” causes any packet
matching the route to disappear or vanish from the network. This type of
route is called a “Discard” route if the router returns an ICMP “network-
unreachable” message, or is called a “Reject” route if no ICMP message is
returned. The Dell Networking series switches support “Reject” routes, where
any packets matching the route network prefix silently disappear.
A common use of a Reject route is to quickly discard packets that cannot be
delivered because a valid route to the destination is not known. Without the
Reject route, these undeliverable packets will continue to circulate through
the network, following the default routes, until their TTL expires. Forwarding
packets that cannot be delivered wastes bandwidth, particularly on expensive
WAN connections. The Reject route will also suppress a type of “Denial of
Service” (DoS) attack where an internal host sends large numbers of packets
to unknown destinations, causing congestion of the WAN links.
• ipv6 route ::/0 null 254
Use this in all routers except the ones with direct Internet connectivity.
Routers with direct Internet connectivity should advertise a default route.
The effect of this route is that when a router does not have connectivity to
the Internet, the router will quickly discard packets that it cannot deliver.
If the router learns a default route from another router, the learned route
will have a lower distance metric and therefore a higher preference. Routes
that are more specific (have more bits in the prefix) will have precedence
over less specific routes. This will cause packets destined for non-existent
networks to be quickly discarded. Also, because of the high distance metric
(254), this route will never be advertised to any neighbor routers.
• ipv6 route fc00::/7 null 254
This route covers the entire ULA (IPv6 private) address space. If you have
networks configured in this address space, you will have more specific
routes for those networks. The more specific routes (more bits of prefix)
will have precedence over this route. Any destinations in this range not
known via another, more specific route do not exist. The effect is that
packets destined for private networks that do not exist in your network will
be quickly discarded instead of being forwarded to the default route.
Содержание N2000 Series
Страница 50: ...50 Contents ...
Страница 54: ...54 Introduction ...
Страница 134: ...134 Using Dell OpenManage Switch Administrator ...
Страница 168: ...168 Setting Basic Network Information ...
Страница 206: ...206 Managing a Switch Stack ...
Страница 242: ...242 Configuring Authentication Authorization and Accounting ...
Страница 318: ...318 Managing General System Settings Figure 12 24 Verify MOTD ...
Страница 322: ...322 Managing General System Settings ...
Страница 344: ...344 Configuring SNMP Figure 13 18 Trap Logs Click Clear to delete all entries from the trap log ...
Страница 358: ...358 Configuring SNMP ...
Страница 388: ...388 Managing Images and Files ...
Страница 415: ...Monitoring Switch Traffic 415 Figure 16 2 sFlow Agent Summary ...
Страница 451: ...Monitoring Switch Traffic 451 5 On the Capture Options dialog click Manage Interfaces ...
Страница 458: ...458 Monitoring Switch Traffic ...
Страница 488: ...488 Configuring Port Characteristics Figure 18 3 Copy Port Settings 8 Click Apply ...
Страница 502: ...502 Configuring Port Characteristics ...
Страница 541: ...Configuring Port and System Security 541 Figure 19 12 Configure Port Security Settings 5 Click Apply ...
Страница 567: ...Configuring Port and System Security 567 Figure 19 38 Captive Portal Client Status ...
Страница 666: ...666 Configuring VLANs Figure 21 6 Add Ports to VLAN 4 Click Apply 5 Verify that the ports have been added to the VLAN ...
Страница 674: ...674 Configuring VLANs Figure 21 17 GVRP Port Parameters Table ...
Страница 680: ...680 Configuring VLANs Figure 21 24 Double VLAN Port Parameter Table ...
Страница 714: ...714 Configuring VLANs ...
Страница 737: ...Configuring the Spanning Tree Protocol 737 Figure 22 9 Spanning Tree Global Settings ...
Страница 760: ...760 Configuring the Spanning Tree Protocol ...
Страница 786: ...786 Discovering Network Devices ...
Страница 793: ...Configuring Port Based Traffic Control 793 Figure 24 3 Storm Control 5 Click Apply ...
Страница 878: ...878 Configuring Connectivity Fault Management ...
Страница 899: ...Snooping and Inspecting Traffic 899 Figure 27 17 DAI Interface Configuration Summary ...
Страница 903: ...Snooping and Inspecting Traffic 903 Figure 27 24 Dynamic ARP Inspection Statistics ...
Страница 924: ...924 Configuring Link Aggregation Figure 28 7 LAG Hash Summary ...
Страница 982: ...982 Configuring Link Aggregation ...
Страница 1062: ...1062 Configuring DHCP Server and Relay Settings ...
Страница 1096: ...1096 Configuring L2 and L3 Relay Features Figure 34 3 DHCP Relay Interface Summary ...
Страница 1200: ...1200 Configuring OSPF and OSPFv3 ...
Страница 1216: ...1216 Configuring RIP ...
Страница 1240: ...1240 Configuring VRRP ...
Страница 1284: ...1284 Configuring DHCPv6 Server and Relay Settings Relay Interface Number Vl100 Relay Remote ID Option Flags ...
Страница 1291: ...Configuring Differentiated Services 1291 Figure 40 5 DiffServ Class Criteria ...
Страница 1336: ...1336 Configuring Auto VoIP ...
Страница 1367: ...Managing IPv4 and IPv6 Multicast 1367 Figure 43 20 IGMP Cache Information ...
Страница 1422: ...1422 Managing IPv4 and IPv6 Multicast ...
Страница 1440: ...1440 System Process Definitions ...
Страница 1460: ...Index 1460 ...