
Minimum
allowable
stop
frequencies
.
The
lowest
analyzer
measurement
frequency
is
30
kHz,
therefore
for
each
value
of
n
there
is
a
minimum
allowable
stop
frequency
that
can
be
used.
That
is
,
the
minimum
stop
frequency
=n
x
30
kHz.
T
able
6-10
lists
the
minimum
frequency
range
that
can
be
used
for
each
value
of
n
for
low
pass
time
domain
measurements
.
Reection
Measurements
In
Time
Domain
Low
P
ass
Figure
6-64
shows
the
time
domain
response
of
an
unterminated
cable
in
both
the
low-pass
step
and
low-pass
impulse
modes
.
Figure
6-64.
Time
Domain
Low
P
ass
Measurements
of
an
Unterminated
Cable
Interpreting
the
low
pass
response
horizontal
axis
.
The
low
pass
measurement
horizontal
axis
is
the
two-way
travel
time
to
the
discontinuity
(as
in
the
bandpass
mode).
The
marker
displays
both
the
two-way
time
and
the
electrical
length
along
the
trace
.
T
o
determine
the
actual
physical
length,
enter
the
appropriate
velocity
factor
as
described
earlier
in
this
section
under
\Time
domain
bandpass
."
Interpreting
the
low
pass
response
vertical
axis
.
The
vertical
axis
depends
on
the
chosen
format.
In
the
low
pass
mode
,
the
frequency
domain
data
is
taken
at
harmonically
related
frequencies
and
extrapolated
to
dc
.
Because
this
results
in
the
inverse
F
ourier
transform
having
only
a
real
part
(the
imaginary
part
is
zero),
the
most
useful
low
pass
step
mode
format
in
this
application
is
the
real
format.
It
displays
the
response
in
reection
coecient
units
.
This
mode
is
similar
to
the
traditional
TDR
response
,
which
displays
the
reected
signal
in
a
real
format
(volts)
versus
time
(or
distance)
on
the
horizontal
axis
.
The
real
format
can
also
be
used
in
the
low
pass
impulse
mode
,
but
for
the
best
dynamic
range
for
simultaneously
viewing
large
and
small
discontinuities
,
use
the
log
magnitude
format.
F
ault
Location
Measurements
Using
Low
P
ass
As
described,
the
low
pass
mode
can
simulate
the
TDR
response
of
the
test
device
.
This
response
contains
information
useful
in
determining
the
type
of
discontinuity
present.
Figure
6-65
illustrates
the
low
pass
responses
of
known
discontinuities
.
Each
circuit
element
was
simulated
to
show
the
corresponding
low
pass
time
domain
S
11
response
waveform.
The
low
pass
mode
gives
the
test
device
response
either
to
a
step
or
to
an
impulse
stimulus
.
Mathematically
,
the
low
pass
impulse
stimulus
is
the
derivative
of
the
step
stimulus
.
Application
and
Operation
Concepts
6-123
Содержание HP 8753D
Страница 10: ...x ...
Страница 26: ...The CITI le Keyword Reference A 7 Index Contents 16 ...
Страница 34: ......
Страница 96: ...Figure 2 43 Gain Compression Using Power Sweep 2 48 Making Measurements ...
Страница 115: ...Figure 2 48 2nd Harmonic Power Level in dBc Making Measurements 2 67 ...
Страница 120: ...Figure 2 53 Gating E ects in a Frequency Domain Example Measurement 2 72 Making Measurements ...
Страница 139: ...Figure 3 12 Connections for a High Dynamic Range Swept IF Conversion Loss Measurement Making Mixer Measurements 3 15 ...
Страница 156: ...Figure 3 23 Example Swept Power Conversion Compression Measurement j 3 32 Making Mixer Measurements ...
Страница 162: ......
Страница 206: ......
Страница 266: ......
Страница 324: ...Figure 6 39 Open Circuit Termination This completes the calibration procedure 6 58 Application and Operation Concepts ...
Страница 334: ...Figure 6 47 Typical Responses of Calibration Standards after Calibration 6 68 Application and Operation Concepts ...
Страница 433: ...Transmission Measurement Uncertainties Speci cations and Measurement Uncertainties 7 3 ...
Страница 434: ...Re ection Measurement Uncertainties 7 4 Speci cations and Measurement Uncertainties ...
Страница 436: ...Transmission Measurement Uncertainties 7 6 Speci cations and Measurement Uncertainties ...
Страница 437: ...Re ection Measurement Uncertainties Speci cations and Measurement Uncertainties 7 7 ...
Страница 439: ...Transmission Measurement Uncertainties Speci cations and Measurement Uncertainties 7 9 ...
Страница 440: ...Re ection Measurement Uncertainties 7 10 Speci cations and Measurement Uncertainties ...
Страница 442: ...Transmission Measurement Uncertainties 7 12 Speci cations and Measurement Uncertainties ...
Страница 443: ...Re ection Measurement Uncertainties Speci cations and Measurement Uncertainties 7 13 ...
Страница 445: ...Transmission Measurement Uncertainties Speci cations and Measurement Uncertainties 7 15 ...
Страница 446: ...Re ection Measurement Uncertainties 7 16 Speci cations and Measurement Uncertainties ...
Страница 448: ...Transmission Measurement Uncertainties 7 18 Speci cations and Measurement Uncertainties ...
Страница 449: ...Re ection Measurement Uncertainties Speci cations and Measurement Uncertainties 7 19 ...
Страница 451: ...Transmission Measurement Uncertainties Speci cations and Measurement Uncertainties 7 21 ...
Страница 452: ...Re ection Measurement Uncertainties 7 22 Speci cations and Measurement Uncertainties ...
Страница 454: ...Transmission Measurement Uncertainties 7 24 Speci cations and Measurement Uncertainties ...
Страница 455: ...Re ection Measurement Uncertainties Speci cations and Measurement Uncertainties 7 25 ...
Страница 468: ......
Страница 470: ...d a c b 8 2 Menu Maps ...
Страница 471: ......
Страница 472: ......
Страница 473: ...d a c b Menu Maps 8 5 ...
Страница 474: ...d a c b d a c b 8 6 Menu Maps ...
Страница 475: ...d a c b Menu Maps 8 7 ...
Страница 476: ...d a c b 8 8 Menu Maps ...
Страница 477: ...d a c b Menu Maps 8 9 ...
Страница 478: ...d a c b 8 10 Menu Maps ...
Страница 479: ...d a c b Menu Maps 8 11 ...
Страница 480: ...d a c b d a c b 8 12 Menu Maps ...
Страница 481: ......
Страница 482: ......
Страница 483: ...8 14 Menu Maps ...
Страница 484: ...d a c b Menu Maps 8 15 ...
Страница 485: ......
Страница 575: ......
Страница 607: ......
Страница 631: ......
Страница 643: ......