TOSHIBA CORPORATION
129
TMP96C141AF
2) Asynchronous Communication (UART) mode
The receiving control has a circuit for
detecting the start bit by the rule of majority.
When two or more “0” are detected during 3
samples, it is recognized as start bit and the
receiving operation is started.
Data being received is also evaluated by
the rule of majority.
➄
Receiving Buffer
To prevent overrun error, the receiving buffer has a
double buffer structure.
Received data is stored one bit by one bit in the
receiving buffer 1 (shift register type). When 7 bits or 8
bits of data are stored in the receiving buffer 1, the stored
data is transferred to another receiving buffer 2 (SC0BUF/
SC1BUF), generating an interrupt INTRX0/INTRX1. The
CPU reads only receiving buffer 2 (SC0BUF/SC1BUF).
Even before the CPU reads the receiving buffer 2
(SC0BUF/SC1BUF), the received data can be stored in
the receiving buffer 1. However, unless the receiving
buffer 2 (SC0BUF/SC1BUF) is read before all bits of the
next data are received by the receiving buffer 1, an over-
run error occurs. If an overrun error occurs, the contents
of the receiving buffer 1 will be lost, although the contents
of the receiving buffer 2 and SC0CR <RB8> SC1CR
<RB8> are still preserved.
The parity bit added in 8-bit UART mode and the
most significant bit (MSB) in 9-bit UART mode are stored
in SC0CR <RB8>/SC1CR <RB8>.
When in 9-bit UART mode, the wake-up function of
the slave controllers is enabled by setting SC0MOD
<WU>/SC1MOD <WU> to “1", and interrupt INTRX0/
INTRX1 occurs only when SC0CR <RB8>/SC1CR
<RB8> is set to “1”.
➅
Transmission Counter
Transmission counter is a 4-bit binary counter which
is used in asynchronous communication (UART) mode
and, like a receiving counter, counts by SIOCLK clock,
generating TxDCLK every 16 clock pulses.
Figure 3.11 (14). Generation of Transmission Clock
➆
Transmission Controller
1) I/O interface mode (channel 1 only)
In SCLK output mode with the setting of
SC1CR <IOC> = “0", the data in the trans-
mission buffer are output bit by bit to TxD1
pin at the rising edge of shift clock which is
output from SCLK1 pin.
In SCLK input mode with the setting
SC1CR <IOC> = “1", the data in the trans-
mission buffer are output bit by bit to TxD1
pin at the rising edge or falling edge of SCLK
input according to the setting of SC1CR
<SCLKC> register.
2) Asynchronous Communication (UART) mode
When transmission data is written in the
transmission buffer sent from the CPU, trans-
mission starts at the rising edge of the next
TxDCLK, generating a transmission shift
clock TxDSFT.
Summary of Contents for TLCS-900 Series
Page 2: ...2 TOSHIBA CORPORATION TMP96C141AF Figure 1 TMP96C141AF Block Diagram ...
Page 10: ...10 TOSHIBA CORPORATION TMP96C141AF Figure 3 3 1 Interrupt Processing Flowchart ...
Page 17: ...TOSHIBA CORPORATION 17 TMP96C141AF Figure 3 3 3 1 Block Diagram of Interrupt Controller ...
Page 18: ...18 TOSHIBA CORPORATION TMP96C141AF 1 Interrupt Priority Setting Register ...
Page 19: ...TOSHIBA CORPORATION 19 TMP96C141AF 2 External Interrupt Control ...
Page 26: ...26 TOSHIBA CORPORATION TMP96C141AF Port 0 Register Figure 3 5 3 Registers for Ports 0 and 1 ...
Page 28: ...28 TOSHIBA CORPORATION TMP96C141AF Figure 3 5 5 Registers for Port 2 ...
Page 30: ...30 TOSHIBA CORPORATION TMP96C141AF Figure 3 5 6 Port 3 P30 P31 P32 P35 P36 P37 ...
Page 31: ...TOSHIBA CORPORATION 31 TMP96C141AF Figure 3 5 7 Port 3 P33 P34 ...
Page 34: ...34 TOSHIBA CORPORATION TMP96C141AF Figure 3 5 9 Port 4 ...
Page 38: ...38 TOSHIBA CORPORATION TMP96C141AF Port 6 Register Figure 3 5 14 Registers for Port 6 ...
Page 40: ...40 TOSHIBA CORPORATION TMP96C141AF Figure 3 5 16 Registers for Port 7 ...
Page 43: ...TOSHIBA CORPORATION 43 TMP96C141AF Figure 3 5 19 Registers for Port 8 ...
Page 47: ...TOSHIBA CORPORATION 47 TMP96C141AF Figure 3 5 24 Registers for Port 9 ...
Page 55: ...TOSHIBA CORPORATION 55 TMP96C141AF Figure 3 7 1 Block Diagram of 8 Bit Timers Timers 0 and 1 ...
Page 58: ...58 TOSHIBA CORPORATION TMP96C141AF Figure 3 7 4 Timer Operation Control Register TRUN ...
Page 59: ...TOSHIBA CORPORATION 59 TMP96C141AF Figure 3 7 5 Timer Mode Control Register TMOD ...
Page 60: ...60 TOSHIBA CORPORATION TMP96C141AF Figure 3 7 6 Timer Flip Flop Control Register TFFCR ...
Page 74: ...74 TOSHIBA CORPORATION TMP96C141AF Figure 3 8 4 8 Bit PWM0 Mode Control Register ...
Page 75: ...TOSHIBA CORPORATION 75 TMP96C141AF Figure 3 8 5 8 Bit PWM1 Mode Control Register ...
Page 76: ...76 TOSHIBA CORPORATION TMP96C141AF Figure 3 8 6 8 Bit PWM F F Control Register ...
Page 77: ...TOSHIBA CORPORATION 77 TMP96C141AF Figure 3 8 7 Timer Operation Control Register TRUN ...
Page 85: ...TOSHIBA CORPORATION 85 TMP96C141AF Figure 3 9 1 Block Diagram of 16 Bit Timer Timer 4 ...
Page 86: ...86 TOSHIBA CORPORATION TMP96C141AF Figure 3 9 2 Block Diagram of 16 Bit Timer Timer 5 ...
Page 88: ...88 TOSHIBA CORPORATION TMP96C141AF Figure 3 9 4 16 Bit Controller Register T4MOD 2 2 ...
Page 89: ...TOSHIBA CORPORATION 89 TMP96C141AF Figure 3 9 5 16 Bit Timer 4 F F Control T4FFCR ...
Page 90: ...90 TOSHIBA CORPORATION TMP96C141AF Figure 3 9 6 16 Bit Timer Mode Control Register T5MOD 1 2 ...
Page 91: ...TOSHIBA CORPORATION 91 TMP96C141AF Figure 3 9 7 16 Bit Timer Control Register T5MOD 2 2 ...
Page 104: ...104 TOSHIBA CORPORATION TMP96C141AF Figure 3 10 2a Pattern Generation Control Register PG01CR ...
Page 105: ...TOSHIBA CORPORATION 105 TMP96C141AF Figure 3 10 2b Pattern Generation Control Register PG01CR ...
Page 107: ...TOSHIBA CORPORATION 107 TMP96C141AF Figure 3 10 5 16 bit Timer Trigger Control Register T45CR ...
Page 140: ...140 TOSHIBA CORPORATION TMP96C141AF Figure 3 12 2 A D Control Register ...
Page 148: ...148 TOSHIBA CORPORATION TMP96C141AF Figure 3 13 4 Watchdog Timer Mode Register ...
Page 149: ...TOSHIBA CORPORATION 149 TMP96C141AF Figure 3 13 5 Watchdog Timer Control Register ...
Page 153: ...TOSHIBA CORPORATION 153 TMP96C141AF 1 Read Cycle ...
Page 154: ...154 TOSHIBA CORPORATION TMP96C141AF 2 Write Cycle ...
Page 157: ...TOSHIBA CORPORATION 157 TMP96C141AF 4 8 Timing Chart for I O Interface Mode ...
Page 171: ...TOSHIBA CORPORATION 171 TMP96C141AF 8 Interrupt Control 1 2 ...
Page 175: ...TOSHIBA CORPORATION 175 TMP96C141AF P42 CS2 CAS2 P5 AN0 3 P87 INT0 P90 TXD0 P93 TXD1 ...
Page 176: ...176 TOSHIBA CORPORATION TMP96C141AF NMI WDTOUT CLK EA AM8 16 ALE RESET ...
Page 177: ...TOSHIBA CORPORATION 177 TMP96C141AF X1 X2 VREF AGND ...