20
TOSHIBA CORPORATION
TMP96C141AF
Micro DMA0 Start Vector
7
6
5
4
3
2
1
0
bit Symbol
DMA0V8
DMA0V7
DMA0V6
DMA0V5
DMA0V4
Read / Write
W
After reset
0
0
0
0
0
Micro DMA1 Start Vector
7
6
5
4
3
2
1
0
bit Symbol
DMA1V8
DMA1V7
DMA1V6
DMA1V5
DMA1V4
Read / Write
W
After reset
0
0
0
0
0
Micro DMA2 Start Vector
7
6
5
4
3
2
1
0
bit Symbol
DMA2V8
DMA2V7
DMA2V6
DMA2V5
DMA2V4
Read / Write
W
After reset
0
0
0
0
0
Micro DMA3 Start Vector
7
6
5
4
3
2
1
0
bit Symbol
DMA3V8
DMA3V7
DMA3V6
DMA3V5
DMA3V4
Read / Write
W
After reset
0
0
0
0
0
DMA0V
(007CH)
DMA1V
(007DH)
DMA2V
(007EH)
DMA3V
(007FH)
(read-modify-write is not possible.)
(read-modify-write is not possible.)
(read-modify-write is not possible.)
(read-modify-write is not possible.)
(3) High-Speed Micro DMA Start Vector
When the CPU reads the interrupt vector after accepting an inter-
rupt, it simultaneously compares the interrupt vector with each
channel’s micro DMA start vector (bits 4 to 8 of the interrupt vec-
tor). When both match, the interrupt is processed in micro
DMA mode for the channel whose value matched.
If the interrupt vector matches more than one chan-
nel, the channel with the lower channel number has a
higher priority.
(4) Notes
The instruction execution unit and the bus interface unit of this
CPU operate independently of each other. Therefore, if the instruc-
tion used to clear an interrupt request flag of an interrupt is fetched
before the interrupt is generated, it is possible that the CPU might
execute the fetched instruction to clear the interrupt request flag
while reading the interrupt vector after accepting the inter-
rupt. If so, the CPU would read the default vector 00A0H
and start the interrupt processing from the address
80A0H.
To avoid this, make sure that the instruction used to
clear the interrupt request flag comes after the DI instruction.
Summary of Contents for TLCS-900 Series
Page 2: ...2 TOSHIBA CORPORATION TMP96C141AF Figure 1 TMP96C141AF Block Diagram ...
Page 10: ...10 TOSHIBA CORPORATION TMP96C141AF Figure 3 3 1 Interrupt Processing Flowchart ...
Page 17: ...TOSHIBA CORPORATION 17 TMP96C141AF Figure 3 3 3 1 Block Diagram of Interrupt Controller ...
Page 18: ...18 TOSHIBA CORPORATION TMP96C141AF 1 Interrupt Priority Setting Register ...
Page 19: ...TOSHIBA CORPORATION 19 TMP96C141AF 2 External Interrupt Control ...
Page 26: ...26 TOSHIBA CORPORATION TMP96C141AF Port 0 Register Figure 3 5 3 Registers for Ports 0 and 1 ...
Page 28: ...28 TOSHIBA CORPORATION TMP96C141AF Figure 3 5 5 Registers for Port 2 ...
Page 30: ...30 TOSHIBA CORPORATION TMP96C141AF Figure 3 5 6 Port 3 P30 P31 P32 P35 P36 P37 ...
Page 31: ...TOSHIBA CORPORATION 31 TMP96C141AF Figure 3 5 7 Port 3 P33 P34 ...
Page 34: ...34 TOSHIBA CORPORATION TMP96C141AF Figure 3 5 9 Port 4 ...
Page 38: ...38 TOSHIBA CORPORATION TMP96C141AF Port 6 Register Figure 3 5 14 Registers for Port 6 ...
Page 40: ...40 TOSHIBA CORPORATION TMP96C141AF Figure 3 5 16 Registers for Port 7 ...
Page 43: ...TOSHIBA CORPORATION 43 TMP96C141AF Figure 3 5 19 Registers for Port 8 ...
Page 47: ...TOSHIBA CORPORATION 47 TMP96C141AF Figure 3 5 24 Registers for Port 9 ...
Page 55: ...TOSHIBA CORPORATION 55 TMP96C141AF Figure 3 7 1 Block Diagram of 8 Bit Timers Timers 0 and 1 ...
Page 58: ...58 TOSHIBA CORPORATION TMP96C141AF Figure 3 7 4 Timer Operation Control Register TRUN ...
Page 59: ...TOSHIBA CORPORATION 59 TMP96C141AF Figure 3 7 5 Timer Mode Control Register TMOD ...
Page 60: ...60 TOSHIBA CORPORATION TMP96C141AF Figure 3 7 6 Timer Flip Flop Control Register TFFCR ...
Page 74: ...74 TOSHIBA CORPORATION TMP96C141AF Figure 3 8 4 8 Bit PWM0 Mode Control Register ...
Page 75: ...TOSHIBA CORPORATION 75 TMP96C141AF Figure 3 8 5 8 Bit PWM1 Mode Control Register ...
Page 76: ...76 TOSHIBA CORPORATION TMP96C141AF Figure 3 8 6 8 Bit PWM F F Control Register ...
Page 77: ...TOSHIBA CORPORATION 77 TMP96C141AF Figure 3 8 7 Timer Operation Control Register TRUN ...
Page 85: ...TOSHIBA CORPORATION 85 TMP96C141AF Figure 3 9 1 Block Diagram of 16 Bit Timer Timer 4 ...
Page 86: ...86 TOSHIBA CORPORATION TMP96C141AF Figure 3 9 2 Block Diagram of 16 Bit Timer Timer 5 ...
Page 88: ...88 TOSHIBA CORPORATION TMP96C141AF Figure 3 9 4 16 Bit Controller Register T4MOD 2 2 ...
Page 89: ...TOSHIBA CORPORATION 89 TMP96C141AF Figure 3 9 5 16 Bit Timer 4 F F Control T4FFCR ...
Page 90: ...90 TOSHIBA CORPORATION TMP96C141AF Figure 3 9 6 16 Bit Timer Mode Control Register T5MOD 1 2 ...
Page 91: ...TOSHIBA CORPORATION 91 TMP96C141AF Figure 3 9 7 16 Bit Timer Control Register T5MOD 2 2 ...
Page 104: ...104 TOSHIBA CORPORATION TMP96C141AF Figure 3 10 2a Pattern Generation Control Register PG01CR ...
Page 105: ...TOSHIBA CORPORATION 105 TMP96C141AF Figure 3 10 2b Pattern Generation Control Register PG01CR ...
Page 107: ...TOSHIBA CORPORATION 107 TMP96C141AF Figure 3 10 5 16 bit Timer Trigger Control Register T45CR ...
Page 140: ...140 TOSHIBA CORPORATION TMP96C141AF Figure 3 12 2 A D Control Register ...
Page 148: ...148 TOSHIBA CORPORATION TMP96C141AF Figure 3 13 4 Watchdog Timer Mode Register ...
Page 149: ...TOSHIBA CORPORATION 149 TMP96C141AF Figure 3 13 5 Watchdog Timer Control Register ...
Page 153: ...TOSHIBA CORPORATION 153 TMP96C141AF 1 Read Cycle ...
Page 154: ...154 TOSHIBA CORPORATION TMP96C141AF 2 Write Cycle ...
Page 157: ...TOSHIBA CORPORATION 157 TMP96C141AF 4 8 Timing Chart for I O Interface Mode ...
Page 171: ...TOSHIBA CORPORATION 171 TMP96C141AF 8 Interrupt Control 1 2 ...
Page 175: ...TOSHIBA CORPORATION 175 TMP96C141AF P42 CS2 CAS2 P5 AN0 3 P87 INT0 P90 TXD0 P93 TXD1 ...
Page 176: ...176 TOSHIBA CORPORATION TMP96C141AF NMI WDTOUT CLK EA AM8 16 ALE RESET ...
Page 177: ...TOSHIBA CORPORATION 177 TMP96C141AF X1 X2 VREF AGND ...