background image

of the PWM output.

If a duty cycle of 0.0% (totally off) is required, consider using a simple inverter IC such as the CD74ACT540E from TI. Or you can
switch the mode of the timer to some input mode, and add an external pull-down to hold the line low when set to input.

2.9.1.2 - PWM Output (8-Bit, Mode 1)

Outputs a pulse width modulated rectangular wave output. Value passed should be 0-65535, and determines what portion of the
total time is spent low (out of 65536 total increments). The lower byte is actually ignored since this is 8-bit PWM. That means the
duty cycle can be varied from 100% (0 out of 65536 are low) to 0.4% (65280 out of 65536 are low).

The overall frequency of the PWM output is the clock frequency specified by TimerClockBase/TimerClockDivisor divided by 2

8

.

The following table shows the range of available PWM frequencies based on timer clock settings.

PWM8 Frequency Ranges

TimerClockBase

Divisor=1

Divisor=256

0

4 MHz

15625

N/A

1

12 MHz

46875

N/A

2

48 MHz (default)

187500

N/A

3

1 MHz /Divisor

3906.25

15.259

4

4 MHz /Divisor

15625

61.035

5

12 MHz /Divisor

46875

183.105

6

48 MHz /Divisor

187500

732.422

Table 2.9.1.2-1. 8-bit PWM Frequencies

Note that the clocks above apply to the U3 hardware revision 1.21. With hardware revision 1.20 all clocks are half of those values.

The same clock applies to all timers, so all 8-bit PWM channels will have the same frequency and will have their falling edges at
the same time.

PWM output starts by setting the digital line to output-low for the specified amount of time. The output does not necessarily start
instantly, but rather waits for the internal clock to roll. For example, if the PWM frequency is 100 Hz, that means the period is 10
milliseconds, and thus after the command is received by the device it could be anywhere from 0 to 10 milliseconds before the start
of the PWM output.

If a duty cycle of 0.0% (totally off) is required, consider using a simple inverter IC such as the CD74ACT540E from TI. Or you can
switch the mode of the timer to some input mode, and add an external pull-down to hold the line low when set to input.

2.9.1.3 - Period Measurement (32-Bit, Modes 2 & 3)

Mode 2: On every rising edge seen by the external pin, this mode records the number of clock cycles (clock frequency determined
by TimerClockBase/TimerClockDivisor) between this rising edge and the previous rising edge. The value is updated on every
rising edge, so a read returns the time between the most recent pair of rising edges.

In this 32-bit mode, the processor must jump to an interrupt service routine to record the time, so small errors can occur if another
interrupt is already in progress. The possible error sources are:

Other edge interrupt timer modes (2/3/4/5/8/9/12/13). If an interrupt is already being handled due to an edge on the other
timer, delays of a few microseconds are possible.
If a stream is in progress, every sample is acquired in a high-priority interrupt. These interrupts could cause delays on the
order of 10 microseconds.
The always active U3 system timer causes an interrupt 61 times per second. If this interrupt happens to be in progress when
the edge occurs, a delay of about 1 microsecond is possible. If the software watchdog is enabled, the system timer interrupt
takes longer to execute and a delay of a few microseconds is possible.

Note that the minimum measurable period is limited by the edge rate limit discussed in Section 2.9.2.

See Section 3.2.1 for a special condition if stream mode is used to acquire timer data in this mode.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will return zero until a new edge is
detected. If a timer is reset and read in the same function call, the read returns the value just before the reset.

Mode 3 is the same except that falling edges are used instead of rising edges.

2.9.1.4 - Duty Cycle Measurement (Mode 4)

Records the high and low time of a signal on the external pin, which provides the duty cycle, pulse width, and period of the signal.
Returns 4 bytes, where the first two bytes (least significant word or LSW) are a 16-bit value representing the number of clock ticks
during the high signal, and the second two bytes (most significant word or MSW) are a 16-bit value representing the number of
clock ticks during the low signal. The clock frequency is determined by TimerClockBase/TimerClockDivisor.

The appropriate value is updated on every edge, so a read returns the most recent high/low times. Note that a duty cycle of 0% or
100% does not have any edges.

To select a clock frequency, consider the longest expected high or low time, and set the clock frequency such that the 16-bit
registers will not overflow.

Note that the minimum measurable high/low time is limited by the edge rate limit discussed in Section 2.9.2.

When using the LabJackUD driver the value returned is the entire 32-bit value. To determine the high and low time this value
should be split into a high and low word. One way to do this is to do a modulus divide by 2

16

 to determine the LSW, and a normal

divide by 2

16

 (keep the quotient and discard the remainder) to determine the MSW.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will return zero until a new edge is
detected. If a timer is reset and read in the same function call, the read returns the value just before the reset. The duty cycle reset
is special, in that if the signal is low at the time of reset, the high-time/low-time registers are set to 0/65535, but if the signal is high
at the time of reset, the high-time/low-time registers are set to 65535/0. Thus if no edges occur before the next read, it is possible
to tell if the duty cycle is 0% or 100%.

2.9.1.5 - Firmware Counter Input (Mode 5)

On every rising edge seen by the external pin, this mode increments a 32-bit register. Unlike the pure hardware counters, these
timer counters require that the firmware jump to an interrupt service routine on each edge.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will return zero until a new edge is
detected. If a timer is reset and read in the same function call, the read returns the value just before the reset.

2.9.1.6 - Firmware Counter Input With Debounce (Mode 6)

17

Summary of Contents for LJU3-LV

Page 1: ...sponsible for shipping to LabJack Corporation and LabJack Corporation will pay for the return shipping Limitation of Liability LabJack designs and manufactures measurement and automation peripherals t...

Page 2: ...entry below the serial number to bring up the U3 configuration panel Click on Test in the configuration panel to bring up the test panel where you can view and control the various I O on the U3 If LJ...

Page 3: ...14 exe Size 49 99 MB Upload date 2014 10 14 12 45 The LabJack Control Panel application LJCP handles configuration and testing of the UD series hardware Click on the Find Devices button to search for...

Page 4: ...or Ethernet devices using specified IP addresses Only applies to UE9 device LJControlPanel is normally installed by the main LabJack installer which is the link at the top of the page 1 2 Self Upgrade...

Page 5: ...rent I O areas Communication Edge Screw Terminal Edge DB Edge The communication edge has a USB type B connector with black cable connected in Figure 2 1 All power and communication is handled by the U...

Page 6: ...tal operations including analog digital configuration are ignored on these 4 fixed analog inputs Timers and counters can appear on various pins but other I O lines never move For example Timer1 can ap...

Page 7: ...Negative Channel Numbers Positive channel 31 puts the internal Vreg 3 3 volts on the positive input of the ADC See Section 2 6 4 for information about the internal temperature sensor If the negative c...

Page 8: ...aging the U3 but more thought is required to determine what is necessary to make useful measurements with the U3 or any measurement device Voltage versus ground The single ended analog inputs on the U...

Page 9: ...es are noted connect the ground to U3 SGND with a 100 series resistor Then again use the DMM to measure the voltage of each signal wire before connecting to the U3 Another good general rule is to use...

Page 10: ...Figure 2 6 2 where one of the resistors is known and the other is the unknown If Vin is known and Vout is measured the voltage divider equation can be rearranged to solve for the unknown resistance 2...

Page 11: ...e other channel to GND with a small jumper and then take a differential reading of your channel compared to that grounded channel The nominal input range of a high voltage single ended analog input is...

Page 12: ...d offset but of course the op amp must be powered with supplies greater than the desired output range depending on the ability of the op amp to drive it s outputs close to the power rails If 10 12 or...

Page 13: ...h bit of I O corresponds to the same bit in the parameter e g the direction of FIO0 is set in bit 0 of parameter FIODir For instance in the low level function ConfigU3 the parameter FIODirection is a...

Page 14: ...tal input to about 3 3 volts logic high When the switch is closed the ground connection will overpower the pull up resistor and pull the digital input to 0 volts logic low Since the mechanical switch...

Page 15: ...ll turn on When the digital line is set to input it is the equivalent of a 3 3 volt connection with 100 k in series The resulting voltage across the control inputs of the relay will be close to zero a...

Page 16: ...Hz 2 22 48 MHz default 3 23 1 MHz Divisor 4 24 4 MHz Divisor 5 25 12 MHz Divisor 6 26 48 MHz Divisor Table 2 9 2 U3 Timer Clock Base Options Note that these clocks apply to the U3 hardware revision 1...

Page 17: ...an interrupt 61 times per second If this interrupt happens to be in progress when the edge occurs a delay of about 1 microsecond is possible If the software watchdog is enabled the system timer inter...

Page 18: ...is 100 Hz that means the period is 10 milliseconds and thus after the command is received by the device it could be anywhere from 0 to 10 milliseconds before the start of the frequency output Frequen...

Page 19: ...timing modes described above modes 2 3 except that hardware capture registers are used to record the edge times This limits the times to 16 bit values but is accurate to the resolution of the clock a...

Page 20: ...e ability of these lines to sink or source current Refer to the specifications in AppendixA All digital I O on the U3 have 3 possible states input output high or output low Each bit of I O can be conf...

Page 21: ...corner Then clockwise it goes Vbus 5 volts lower right pin 1 red wire D lower left pin 2 white wire and D upper left pin 3 green wire If you have a shield wire it can be connected to either of the lar...

Page 22: ...FIO4 EIO7 are still available as flexible I O same as the U3 LV Revision 1 20 21 U3s cannot be upgraded to 1 30 3 Operation The following sections discuss command response mode and stream mode Comman...

Page 23: ...the UD driver will split it like that The tables above were measured with U3 hardware version 1 21 which started shipping in late August of 2006 The times could be up to twice as long with hardware ve...

Page 24: ...roll but the MSW be captured before it is incremented That means that only the LSW is reliable and thus you might as well just use the 16 bit modes Mode 11 the upper 32 bits of the system timer is not...

Page 25: ...ut to all request result functions that tells the function what LabJack it is talking to The handle is obtained from the OpenLabJack function IOType This is an input to all request result functions th...

Page 26: ...at follow are written in C To help those unfamiliar with strings in C these functions expect null terminated 8 bit ASCII strings How this translates to a particular development environment is beyond t...

Page 27: ...eful for passing string constants in languages that cannot include the header file and is generally only used with the put get config IOTypes The strings should contain the constant name as indicated...

Page 28: ...f information with the request to allow a generic parser to determine what should be done when the results are received Outputs None 4 2 6 Go After using AddRequest to make an internal list of request...

Page 29: ...either function returns LJE_NO_MORE_DATA_AVAILABLE there are no more items in the list of results Items can be read more than once by calling GetFirstResult to move back to the beginning of the list U...

Page 30: ...scription Returns Constant number of the passed string Inputs pString A pointer to the string representation of the constant Outputs None 4 2 13 ErrorToString Outputs a string describing the given err...

Page 31: ...on the U3 Resolution Pass a nonzero value to enable QuickSample Settling Pass a nonzero value to enable LongSettling Binary If this is nonzero True the Voltage parameter will return the raw binary va...

Page 32: ...ckBaseIndex Pass a constant to set the timer base clock The default is device specific 4 TimerClockDivisor Pass a divisor from 0 255 where 0 is a divisor of 256 aTimerModes An array where each element...

Page 33: ...LE_PORT x1 is number of bits LJ_ioGET_ANALOG_ENABLE_PORT x1 is number of bits When a request is done with one of the port IOTypes the Channel parameter is used to specify the starting bit number and t...

Page 34: ...t a read of AIN1 using the special 0 3 6 volt range AddRequest lngHandle LJ_ioGET_AIN_DIFF 1 0 32 0 Execute the requests GoOne lngHandle Since multiple requests were made with the same IOType and Chan...

Page 35: ..._PORT 4 0 10 0 Set FIO3 to output high AddRequest lngHandle LJ_ioPUT_DIGITAL_BIT 3 1 0 0 Set EIO6 CIO2 5 bits starting from digital channel 14 to b10100 d20 That is EIO6 0 EIO7 0 CIO0 1 CIO1 0 and CIO...

Page 36: ...d dblHighCycles double unsigned long dblValue 65536 dblLowCycles double unsigned long dblValue 65536 dblDutyCycle 100 dblHighCycles dblHighCycles dblLowCycles dblHighTime 0 000001 dblHighCycles dblLow...

Page 37: ...the stream Start the stream eGet lngHandle LJ_ioSTART_STREAM 0 dblValue 0 The actual scan rate is dependent on how the desired scan rate divides into the LabJack clock The actual scan rate is returned...

Page 38: ...RAW_OUT 0 numBytesToWrite pwriteArray Raw In This command reads the bytes from the device eGet lngHandle LJ_ioRAW_IN 0 numBytesToRead preadArray 4 3 9 Easy Functions The easy functions are simple alte...

Page 39: ..._CLOCK_FACTOR LJ_chSPI_MOSI_PIN_NUM LJ_chSPI_MISO_PIN_NUM LJ_chSPI_CLK_PIN_NUM LJ_chSPI_CS_PIN_NUM Following is example pseudocode to configure SPI communication First configure the SPI communication...

Page 40: ...ial protocol Using this serial protocol is considered an advanced topic A good knowledge of the protocol is recommended and a logic analyzer or oscilloscope might be needed for troubleshooting Also co...

Page 41: ...not actually sent to the hardware until the LJ_ioSWDT_CONFIG IOType above is used LJ_chSWDT_RESET_DEVICE LJ_chSWDT_UDPATE_DIOA LJ_chSWDT_DIOA_CHANNEL LJ_chSWDT_DIOA_STATE Following is example pseudoco...

Page 42: ...ious scan completed Scan rate is too high 61 LJE_FIRMWARE_VERSION_IOTYPE IOType not supported with this firmware 62 LJE_FIRMWARE_VERSION_CHANNEL Channel not supported with this firmware 63 LJE_FIRMWAR...

Page 43: ...umulator 3 Divide by 28 and sum the quotient and remainder 4 Divide by 28 and sum the quotient and remainder Destination bit This bit specifies whether the command is destined for the local or remote...

Page 44: ...Mask1 Reserved 8 LocalID 9 TimerCounterConfig Bits 4 7 TimerCounterPinOffset Bit 3 Enable Counter1 Bit 2 Enable Counter0 Bit 0 1 Number of timers enabled 10 FIOAnalog 11 FIODirection 12 FIOState 13 EI...

Page 45: ...fies U3C and if set then bit 4 specifies HV version 5 2 3 ConfigIO Writes and reads the current IO configuration Command Byte 0 Checksum8 1 0xF8 2 0x03 3 0x0B 4 Checksum16 LSB 5 Checksum16 MSB 6 Write...

Page 46: ...s Since this command has a flexible size byte 2 will vary For instance if a single IOType of PortStateRead d26 is passed byte 2 would be equal to 1 for the command and 3 for the response If a single I...

Page 47: ...IN LSB MSB Analog input reading is returned justified as a 16 bit value always unsigned LabJackPython example session Automatically extracted from u3 py Debugging turned on to show the bytes sent and...

Page 48: ...Automatically extracted from u3 py Debugging turned on to show the bytes sent and received 5 2 5 6 BitStateWrite IOType 11 BitStateWrite 2 Command Bytes 0 IOType 11 1 Bits 0 4 IO Number Bit 7 State 0...

Page 49: ...t specifies whether to update the corresponding bit of I O State Each bit of this value corresponds to the specified bit of I O such that 1 High and 0 Low To set all low State d0 To set all 20 standar...

Page 50: ...y Debugging turned on to show the bytes sent and received 5 2 5 15 Timer IOType 42 44 Timer 4 Command Bytes 0 IOType 42 44 1 Bit 0 UpdateReset 2 Value LSB 3 Value MSB 4 Response Bytes 0 Timer LSB 1 Ti...

Page 51: ...e version 1 30 1 21 Command number 0x2A accesses the user memory area which consists of 512 bytes block numbers 0 15 Command number 0x2D accesses the calibration memory area consisting of 512 bytes bl...

Page 52: ...g Command Byte 0 Checksum8 1 0xF8 2 0x00 0x01 3 0x29 0x2C 4 Checksum16 LSB 5 Checksum16 MSB 6 0x4C 7 0x6C Response Byte 0 Checksum8 1 0xF8 2 0x01 3 0x29 0x2C 4 Checksum16 LSB 5 Checksum16 MSB 6 Errorc...

Page 53: ...15 30 for temp sensor 31 for Vreg or 193 224 for digital timer counter channels NChannel is 0 7 for FIO0 FIO7 8 15 for EIO0 EIO15 30 for Vref or 31 199 for single ended 5 2 11 StreamStart Once the str...

Page 54: ...0 Power up the U3 with a short from FIO6 to SPC FIO2 to SCL on U3 1 20 1 21 then remove the jumper and power cycle the device again This also affects the parameters in the ConfigU3 function The watch...

Page 55: ...ng handled manually outside of this function care must be taken to make sure SCK is initially set to CPOL before asserting CS All standard SPI modes supported A B C and D Mode A CPOL 0 CPHA 0 Mode B C...

Page 56: ...es divided by 2 If the number of bytes is odd round up and add an extra zero to the packet NumAsynchBytesToSend Specifies how many bytes will be sent 0 56 NumAsynchBytesInRXBuffer Returns how many byt...

Page 57: ...s the read write bit Note that the read write bit is controlled automatically by the LabJack and thus bit 0 is ignored NumI2CBytesToSend Specifies how many I C bytes will be sent 0 50 NumI2CBytesToRec...

Page 58: ...yte Offset Description Nominal Values 0 Checksum8 0 0 3 Not Used 0x00 1 0xF8 0 4 FIO Directions 0x00 2 0x01 0 5 FIO States 0xFF 3 0x0E 0 6 FIO Analog 0x00 4 Checksum16 LSB 0 7 Not Used 0x00 5 Checksum...

Page 59: ...formation is only needed when using low level functions and other ways of getting binary readings Readings in volts already have the calibration constants applied The UD driver for example normally re...

Page 60: ...function to retrieve the first 8 blocks of memory This information can then be used to convert all analog input readings to voltages Again the high level Windows DLL LabJackUD does this automatically...

Page 61: ...al LV 2 4 mV Single Ended HV 9 8 mV Special HV 19 5 mV Command Response Speed See Section 3 1 Stream Perfromance See Section 3 2 4 With DAC1 disabled on hardware version 1 30 5 This is the maximum vol...

Page 62: ...to the U3 possible causing poor start up behavior 13 These specifications provide the answer to the question How much current can the digital I O sink or source For instance if EIO0 is configured as...

Page 63: ...PCB Dimensions STEP U3 Enclosure Dimensions DWG U3 Enclosure Dimensions DXF U3 Enclosure Dimensions IGS U3 Enclosure Dimensions STEP U3 Enclosure Drawings zip U3 PCB Dimensions dxf U3 PCB Dimensions p...

Page 64: ...e ack for the address will be reported Improved timer performance Changed the watchdog so that it will not clear until the host computer has read the response Fixed a problem that was causing edge32 a...

Reviews: