Heatsink Clip Load Metrology
76
Thermal and Mechanical Design Guidelines
Remarks: Alternate Heatsink Sample Preparation
As mentioned above, making sure that the load cells have minimum protrusion out of
the heatsink base is paramount to meaningful results. An alternate method to make
sure that the test setup will measure loads representative of the non-modified design
is:
•
Machine the pocket in the heat sink base to a depth such that the tips of the load
cells are just flush with the heat sink base
•
Then machine back the heatsink base by around 0.25 mm [0.01”], so that the
load cell tips protrude beyond the base.
Proceeding this way, the original stack height of the heatsink assembly should be
preserved. This should not affect the stiffness of the heatsink significantly.
Figure 7-8. Load Cell Installation in Machined Heatsink Base Pocket – Bottom View
Package IHS
Outline (Top
Surface)
Load Cells
Heatsink Base Pocket
Diameter ~ 29 mm
[~1.15”]
Summary of Contents for CELERON PROCESSOR E3000 - THERMAL AND MECHANICAL DESIGN
Page 24: ...Processor Thermal Mechanical Information 24 Thermal and Mechanical Design Guidelines ...
Page 80: ...Heatsink Clip Load Metrology 80 Thermal and Mechanical Design Guidelines ...
Page 82: ...Thermal Interface Management 82 Thermal and Mechanical Design Guidelines ...
Page 108: ...Fan Performance for Reference Design 108 Thermal and Mechanical Design Guidelines ...