![Texas Instruments ADS79 EVM-PDK Series Скачать руководство пользователя страница 28](http://html1.mh-extra.com/html/texas-instruments/ads79-evm-pdk-series/ads79-evm-pdk-series_manual_1095337028.webp)
28
ADS7950, ADS7951, ADS7952, ADS7953, ADS7954, ADS7955
ADS7956, ADS7957, ADS7958, ADS7959, ADS7960, ADS7961
SLAS605C – JUNE 2008 – REVISED JULY 2018
Product Folder Links:
ADS7950 ADS7951 ADS7952 ADS7953 ADS7954 ADS7955 ADS7956 ADS7957 ADS7958
Copyright © 2008–2018, Texas Instruments Incorporated
8 Detailed Description
8.1 Overview
The ADS7950 to ADS7961 are 12-, 10-, 8-bit multichannel pin-compatible devices. The ADS79xx is a family of
12-, 10-, 8-bit, high-speed, low-power, successive approximation register (SAR) analog-to-digital converter (ADC)
that uses an external reference. The architecture is based on charge redistribution, which inherently includes a
sample/hold function. The analog inputs to the ADS79xx are provided to CHX input channels. All input channels
share a common analog ground AGND. ADS79xx has multiplexer breakout feature which allows user to connect
the signal conditioning circuit between multiplexer output (MXO) and ADC input (AINP). This feature enables use
of common signal conditioning block for the input signal which exhibit similar performance characteristics.
ADS79xx can be programmed to select a channel manually or can be programmed into the auto channel select
mode to sweep through the input channels automatically
,
, and
show device operation timing. Device operation is controlled with CS,
SCLK, and SDI. The device outputs its data on SDO.
Each frame begins with the falling edge of CS. With the falling edge of CS, the input signal from the selected
channel is sampled, and the conversion process is initiated. The device outputs data while the conversion is in
progress. The 16-bit data word contains a 4-bit channel address, followed by a 12-bit conversion result in MSB
first format. There is an option to read the GPIO status instead of the channel address. (Refer to
,
, and
for more details.)
The device selects a new multiplexer channel on the second SCLK falling edge. The acquisition phase starts on
the fourteenth SCLK rising edge. On the next CS falling edge the acquisition phase will end, and the device
starts a new frame.
The TSSOP packaged devices have four
General Purpose IO
(GPIO) pins while QFN versions have only one
GPIO. These four pins can be individually programmed as GPO or GPI. It is also possible to use them for
preassigned functions, refer to
. GPO data can be written into the device through the SDI line. The
device refreshes the GPO data on the CS falling edge as per the SDI data written in previous frame.
Similarly the device latches GPI status on the CS falling edge and outputs the GPI data on the SDO line (if GPI
read is enabled by writing DI04=1 in the previous frame) in the same frame starting with the CS falling edge.
The falling edge of CS clocks out DO15 (first bit of the four bit channel address), and remaining address bits are
clocked out on every falling edge of SCLK until the third falling edge. The conversion result MSB is clocked out
on the 4th SCLK falling edge and LSB on the 15th/13th/11th falling edge respectively for 12/10/8-bit devices. On
the 16th falling edge of SCLK, SDO goes to the 3-state condition. The conversion ends on the 16th falling edge
of SCLK. CS can be asserted (pulled high) only after 16 clocks have elapsed
The device reads a sixteen bit word on the SDI pin while it outputs the data on the SDO pin. SDI data is latched
on every rising edge of SCLK starting with the 1st clock as shown in
,
, and
CS can be asserted (pulled high) only after 16 clocks have elapsed.
The device has two (high and low) programmable alarm thresholds per channel. If the input crosses these limits;
the device flags out an alarm on GPIO0/GPIO1 depending on the GPIO program register settings (refer to
). The alarm is asserted (under the alarm conditions) on the 12th falling edge of SCLK in the same
frame when a data conversion is in progress. The alarm output is reset on the 10th falling edge of SCLK in the
next frame.
The device offers a power-down feature to save power when not in use. There are two ways to powerdown the
device. It can be powered down by writing DI05 = 1 in the mode control register (refer to
, and
); in this case the device powers down on the 16th falling edge of SCLK in the next data frame. Another
way to powerdown the device is through GPIO in the case of the TSSOP packaged devices. GPIO3 can act as
the PD input (refer to
to assign this functionality to GPIO3). This is an asynchronous and active low
input. The device powers down instantaneously after GPIO3 (PD) = 0. The device will power up again on the CS
falling edge with DI05 = 0 in the mode control register and GPIO3 (PD) = 1.