background image

UM2027 

Getting

 started 

 

 

DocID029048 Rev 1 

11/37 

 

the HVDC bus during charging and sinks a current which is too high, preventing 
the DC capacitor from being charged efficiently. 

 

Orange constant indicates the output DC capacitor is not charged to the peak line 
voltage. This may occur when the bridge is started, but a power load is already 
connected to the HVDC bus and sinks a current which is too high, preventing the 
DC capacitor from being fully charged. 

 

Red constant indicates the board is connected to a 198-264 V line while the 
doubler jumper is connected. 

 

Red flashing indicates the MCU detected an error (e:g., the line voltage is outside 
the two correct operating ranges: 90-132 V and 198-264 V; the line frequency is 
not detected as stable for 50 or 60 Hz). 

 

"HVDC" (LED2): this LED lights red when a voltage higher than 50 V is present 
between HVDC and GND_DC terminals (refer to 

Section 2.3: "DC bus capacitor 

discharge for demonstration purpose"

 for further information). 

 

"OUT1" to "OUT5" (LED6 to LED10) are ON when the corresponding AC switch (T1 to 
T5) is turned on. 

2.5 

Possible board adaptations 

The STEVAL-IHT008V1 board allows certain external components to be added to the front-
end circuit, so designers can validate an entire system. The main possible modifications 
are listed below. 

2.5.1 

ACST use and MOV removal 

The T1635T-8FP Triac used for T_ICL can be replaced by an ACST1635-8FP. Both 
devices are indeed pin-to-pin compatible. The MOV used to protect the T1635T-8FP 
(SIOV1) can be removed as the ACST1635T is an overvoltage protected device. 

 

 

if the ACST1635-8FP is triggered in breakover mode, the applied current and its 
rate of increase (di/dt) must remain below the values specified in the datasheet: 
290 A peak current (8/20 µs waveform) and 150 A/µs, respectively. 

 

For a high output DC capacitor value, the current may exceed this datasheet limit. 

On our board, the input varistor (SIOV2) clamps the voltage applied to the ACST1635-8FP 
below the typical clamping voltage of the device (VCL) for surges up to 2 kV. This prevents 
ACST1635-8FP turn-on in breakover. 

2.5.2 

EMI filter and DC bus capacitors change 

The EMI filter and DC capacitors only use through-hole devices to facilitate unsoldering 
them to replacing them with ones used in the target application. This allows a designer to 
adapt the EMI filter and HVDC voltage ripple to specific application requirements (such as 
the power rating). 

Obviously, as soon as these component values are modified, the control law of the T_ICL 
Triac has to be updated to ensure ongoing compliance with the IEC 61000-3-3 limits. For 
this purpose, the maximum peak current during startup can be adjusted with the "MAX-
INRUSH CURRENT" potentiometer. When this potentiometer is turned clockwise, the Triac 
is turned sooner at each half-cycle, leading to a higher peak current. 

The maximum RMS current or voltage fluctuation (when a normalized line impedance is 
used) must then be measured according to the potentiometer position to check compliance 
with IEC 61000-3-3. 

 

Содержание STEVAL-IHT008V1

Страница 1: ...ng the startup phase This solution drastically reduces standby losses as the DC bus can be totally disconnected from the AC mains when it is not required The DC bus is easily turned off by turning off...

Страница 2: ...10 2 5 Possible board adaptations 11 2 5 1 ACST use and MOV removal 11 2 5 2 EMI filter and DC bus capacitors change 11 2 5 3 Power factor circuit connection 12 2 5 4 Motor Inverter connection 12 2 5...

Страница 3: ...diode bridge The AC switches T1 to T5 connected on AC side to control AC loads It should be noted that their drive reference A1 is also connected to the A1 terminal of T_ICL All A1 terminals are conn...

Страница 4: ...oard is also particularly interesting for applications where AC loads have to be controlled such as for valves fans pumps heating resistors etc Such applications include wet appliances washing machine...

Страница 5: ...lt two ACS108 8SN SOT 223 are used for T2 and T3 with a 5 5 mm copper area under the tab These devices can control an RMS load current up to 0 6 A This allows a 100 VA or 50 VA power load to be contro...

Страница 6: ...uncontrolled inrush current due to EMI noise IEC 61000 4 5 2 kV criteria A IEC61000 4 11 criteria A for dips down to 100 of the line voltage during 1 cycle criteria B for interrupts up to 300 cycles...

Страница 7: ...ays to limit inrush current and standby losses But thanks to the T_ICL Triac this function is already available by simply turning off this Triac Figure 5 Solution using relays to limit inrush current...

Страница 8: ...required by European directive 2005 32 EC The losses measured for case 3 are mainly due to the resistor divider circuit R9 R11 R14 R16 used to balance the voltage across the 2 series capacitors C1 an...

Страница 9: ...ant the rectifier to operate in a classic rectifier circuit do not plug the J7 jumper 2 Connect the AC load terminals if used to the associated headers e g for AC switch T1 refer to the N1 OUT1 label...

Страница 10: ...label in Figure 23 STEVAL IHT008V1 silk screen Top side remains lit while the HVDC voltage is above 50 V so the SW2 switch can be released and a new startup can begin as soon as this LED turns off 2...

Страница 11: ...are indeed pin to pin compatible The MOV used to protect the T1635T 8FP SIOV1 can be removed as the ACST1635T is an overvoltage protected device if the ACST1635 8FP is triggered in breakover mode the...

Страница 12: ...defined in Section 1 5 Operating range and performances 2 5 4 Motor Inverter connection An inverter or any other DC DC power converter can be added after the PFC or directly behind the HVDC bus outpu...

Страница 13: ...both inrush current limitation and power loss reduction Above and beyond the simple demonstration of the efficiency and the robustness of this solution by STMicroelectronics this front end circuit als...

Страница 14: ...STEVAL IHT008V1 circuit schematics UM2027 14 37 DocID029048 Rev 1 4 STEVAL IHT008V1 circuit schematics Figure 8 STEVAL IHT008V1 power side and insulated control schematic...

Страница 15: ...UM2027 STEVAL IHT008V1 circuit schematics DocID029048 Rev 1 15 37 Figure 9 STEVAL IHT008V1 control circuit schematic 1 of 3...

Страница 16: ...STEVAL IHT008V1 circuit schematics UM2027 16 37 DocID029048 Rev 1 Figure 10 STEVAL IHT008V1 control circuit schematic 2 of 3 Figure 11 STEVAL IHT008V1 control circuit schematic 3 of 3...

Страница 17: ...e level will be higher if it is not loaded and if the 15 V positive supply is loaded with its highest maximum current The current capabilities of the different outputs are for the whole operating rang...

Страница 18: ...ent a current close to 20 mA is already sunk from the VCC_AC supply This is not the case for the VCC_INS output The maximum VCC_AC voltage is reached when the SMPS 15V_DC output is loaded to the maxim...

Страница 19: ...variation for 230 V single phase grid according to IEC 61000 3 3 gives the associated maximum input current variation related to these different dmax levels To simplify the analysis it could be said...

Страница 20: ...y charged while the line current is kept low In the STEVAL_IHT008V1 MCU firmware the Triac turn on delay reduction step is constant from one half cycle to the following one This step is called Step_Ph...

Страница 21: ...he timer is launched both in count up and count down modes half of the desired value must be given in this parameter Next T_ICL turn on occurs 50 s sooner each time when the MAX_INRUSH CURRENT potenti...

Страница 22: ...to below 17 4 A but the IEC 61000 3 3 limit actually applies to the RMS current As the T_ICL Triac conducts for a few hundred microseconds each half cycle the RMS current is much lower than the peak v...

Страница 23: ...EVAL IHT008V1 board is programmed in order to comply with these different standard tests with the following strategy If the line voltage remains higher than 70 to the reference voltage measured at boa...

Страница 24: ...omponent damage Figure 16 a Board operation during 1 cycle line interruption and Figure 17 b Board operation during 2 cycle line interruption illustrate board operation during a 1 cycle a or 2 cycle b...

Страница 25: ...al voltage Number of cycles Required criteria by standard STEVAL IHT008V1 result 61000 2 1 environments 40 101 122 C B 70 251 302 C A Interruptions 0 2501 3002 C B EN55024 Information technology equip...

Страница 26: ...to this offset the images of the VL VL_IM and VN VN_IM remain positive That means the ICL demo board only requires a single voltage supply and not a supplementary negative one to measure VAC Figure 1...

Страница 27: ...voltage detection The TRIAC phase control needs to be synchronized with the AC line voltage The zero AC line voltage crossing detection uses the AC line voltage measurement Indeed the zero AC line vol...

Страница 28: ...AC voltage monitoring and zero voltage synchronisation UM2027 28 37 DocID029048 Rev 1 Figure 19 Zero AC line voltage crossing detection...

Страница 29: ...CTR must be chosen according to the equation below where IGT is the AC switch gate current and IO_MCU is the output current supplied by the MCU to control the optocoupler LED Given the AC switch gate...

Страница 30: ...r filter VCC_AC the power supply to provide the gate current to the AC switch VCE SAT Opto the transistor collector emitter of the optocoupler IGT the TRIAC gate current NPN is the NPN transistor gain...

Страница 31: ...UM2027 EN55014 test results DocID029048 Rev 1 31 37 10 EN55014 test results Figure 21 EMI noise test with 1000 W load Figure 22 EMI noise test without load...

Страница 32: ...Table 5 Bill of material Reference Part Value C1 C9 1000 F 250 V C2 C4 C5 C8 2 2 nF 440 VAC C6 C7 56 nF 300 V C10 1 nF 50 V C11 C14 1 F 25 V C13 C15 C38 1 nF 50 V C16 C17 C18 C19 C20 C21 C24 C26 C27...

Страница 33: ...der_ 2 54 mm pitch J7 4 way header _ 5 08 pitch J8 J11 J15 J18 J21 J12 J13 J17 2 way plug _ 5 08 pitch J9 J10 3 way plug _ 5 08 pitch J14 J19 4 way header _ 2 54 mm pitch J16 8 way header _ 2 54 pitch...

Страница 34: ...R51 10 k 0 125 W R52 R53 47 R 1 W R54 36 k 0 125 W R55 10 k 0 125 W R56 20 k 0 125 W R57 22 k 0 125 W R58 150 R 0 125 W SIOV1 S07K300 300 VAC SIOV2 S14K300 300 VAC SW1 SW2 SW3 SW4 SW5 micro_switch SW6...

Страница 35: ...put of T2 TP8 OUT3 A2 output of T3 TP9 OUT4 A2 output of T4 TP10 OUT5 A2 output of T5 TP11 HVDC 2 TP12 N Neutral before EMI filter TP13 N1 Neutral after EMI filter TP14 TP24 TP29 GND_DC TP15 G1 Gate s...

Страница 36: ...Revision history UM2027 36 37 DocID029048 Rev 1 13 Revision history Table 7 Document revision history Date Revision Changes 09 Mar 2016 1 Initial release...

Страница 37: ...sers are solely responsible for the choice selection and use of ST products and ST assumes no liability for application assistance or the design of Purchasers products No license express or implied to...

Отзывы: