Chapter 13
| Basic Administration Protocols
Ethernet Ring Protection Switching
– 463 –
■
A sub-ring may be attached to a primary ring with or without a virtual
channel. A virtual channel is used to connect two interconnection points
on the sub-ring, tunneling R-APS control messages across an arbitrary
Ethernet network topology. If a virtual channel is not used to cross the
intermediate Ethernet network, data in the traffic channel will still flow
across the network, but the all R-APS messages will be terminated at the
interconnection points.
■
Sub-ring with R-APS Virtual Channel – When using a virtual channel to
tunnel R-APS messages between interconnection points on a sub-ring, the
R-APS virtual channel may or may not follow the same path as the traffic
channel over the network. R-APS messages that are forwarded over the
sub-ring’s virtual channel are broadcast or multicast over the
interconnected network. For this reason the broadcast/multicast domain of
the virtual channel should be limited to the necessary links and nodes. For
example, the virtual channel could span only the interconnecting rings or
sub-rings that are necessary for forwarding R-APS messages of this sub-
ring. Care must also be taken to ensure that the local RAPS messages of the
sub-ring being transported over the virtual channel into the
interconnected network can be uniquely distinguished from those of other
interconnected ring R-APS messages. This can be achieved by, for example,
by using separate VIDs for the virtual channels of different sub-rings.
Note that the R-APS virtual channel requires a certain amount of
bandwidth to forward R-APS messages on the interconnected Ethernet
network where a sub-ring is attached. Also note that the protection
switching time of the sub-ring may be affected if R-APS messages traverse a
long distance over an R-APS virtual channel.
Figure 297: Sub-ring with Virtual Channel
■
Sub-ring without R-APS Virtual Channel – Under certain circumstances it
may not be desirable to use a virtual channel to interconnect the sub-ring
over an arbitrary Ethernet network. In this situation, the R-APS messages
are terminated on the interconnection points. Since the sub-ring does not
provide an R-APS channel nor R-APS virtual channel beyond the
interconnection points, R-APS channel blocking is not employed on the
normal ring links to avoid channel segmentation. As a result, a failure at any
ring link in the sub-ring will cause the R-APS channel of the sub-ring to be
segmented, thus preventing R-APS message exchange between some of
the sub-ring’s ring nodes.
Sub-ring
with Virtual
Channel
Virtual
Channel
RPL Port
Interconnection Node
Ring Node
Major Ring
Содержание GTL-2881
Страница 30: ...Figures 30 Figure 450 Showing RIP Peer Information 669 Figure 451 Resetting RIP Statistics 670 ...
Страница 34: ...Section I Getting Started 34 ...
Страница 48: ...Section II Web Configuration 48 Unicast Routing on page 651 ...
Страница 151: ...Chapter 4 Interface Configuration VLAN Trunking 151 Figure 69 Configuring VLAN Trunking ...
Страница 152: ...Chapter 4 Interface Configuration VLAN Trunking 152 ...
Страница 229: ...Chapter 8 Congestion Control Automatic Traffic Control 229 Figure 135 Configuring ATC Interface Attributes ...
Страница 230: ...Chapter 8 Congestion Control Automatic Traffic Control 230 ...
Страница 596: ...Chapter 14 Multicast Filtering Multicast VLAN Registration for IPv6 596 ...
Страница 620: ...Chapter 15 IP Configuration Setting the Switch s IP Address IP Version 6 620 ...
Страница 670: ...Chapter 18 Unicast Routing Configuring the Routing Information Protocol 670 Figure 451 Resetting RIP Statistics ...
Страница 672: ...Section III Appendices 672 ...
Страница 678: ...Appendix A Software Specifications Management Information Bases 678 ...
Страница 688: ...Appendix C License Statement GPL Code Statement Notification of Compliance 688 ...
Страница 696: ...Glossary 696 ...
Страница 706: ...GTL 2881 GTL 2882 E112016 ST R01 ...