Rev. 2.10
11�
���� 02� 201�
Rev. 2.10
115
���� 02� 201�
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
HT68FU30/HT68FU40/HT68FU50/HT68FU60
Enhanced I/O Flash Type 8-Bit MCU with EEPROM
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
HT68FU30/HT68FU40/HT68FU50/HT68FU60
Enhanced I/O Flash Type 8-Bit MCU with EEPROM
Bit 3
TnOC
: TPn_0, TPn_1 Output control bit
Compare Match Output Mode
0: Initial low
1: Initial high
PWM Mode
0: Active low
1: Active high
This is the output control bit for the TM output pin. Its operation depends upon whether
TM is being used in the Compare Match Output Mode or in the PWM Mode. It has no
effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it
determines the logic level of the TM output pin before a compare match occurs. In the
PWM Mode it determines if the PWM signal is active high or active low.
Bit 2
TnPOL
: TPn_0, TPn_1 Output polarity Control
0: Non-invert
1: Invert
This bit controls the polarity of the TPn_0 or TPn_1 output pin. When the bit is set
high the TM output pin will be inverted and not inverted when the bit is zero. It has no
effect if the TM is in the Timer/Counter Mode.
Bit 1
TnDPX
: TMn PWM period/duty Control
0: CCRP - period; CCRA - duty
1: CCRP - duty; CCRA - period
This bit, determines which of the CCRA and CCRP registers are used for period and
duty control of the PWM waveform.
Bit 0
TnCCLR
: Select TMn Counter clear condition
0: TMn Comparatror P match
1: TMn Comparatror A match
This bit is used to select the method which clears the counter. Remember that the
Compact TM contains two comparators, Comparator A and Comparator P, either of
which can be selected to clear the internal counter. With the TnCCLR bit set high,
the counter will be cleared when a compare match occurs from the Comparator A.
When the bit is low, the counter will be cleared when a compare match occurs from
the Comparator P or with a counter overflow. A counter overflow clearing method can
only be implemented if the CCRP bits are all cleared to zero. The TnCCLR bit is not
used in the PWM Mode.