For 16-bit conversions, the code transitions only after the full code width is present, so
the quantization error is -1 LSB to 0 LSB and the code width of each step is 1 LSB.
33.6.2.5 Linearity errors
The ADC may also exhibit non-linearity of several forms. Every effort has been made to
reduce these errors, but the system designers must be aware of these errors because they
affect overall accuracy:
• Zero-scale error (E
ZS
), sometimes called offset: This error is defined as the difference
between the actual code width of the first conversion and the ideal code width. This
is 1/2 LSB in 8-bit, 10-bit, or 12-bit modes and 1 LSB in 16-bit mode. If the first
conversion is 0x001, the difference between the actual 0x001 code width and its ideal
(1 LSB) is used.
• Full-scale error (E
FS
): This error is defined as the difference between the actual code
width of the last conversion and the ideal code width. This is 1.5 LSB in 8-bit, 10-bit,
or 12-bit modes and 1 LSB in 16-bit mode. If the last conversion is 0x3FE, the
difference between the actual 0x3FE code width and its ideal (1 LSB) is used.
• Differential non-linearity (DNL): This error is defined as the worst-case difference
between the actual code width and the ideal code width for all conversions.
• Integral non-linearity (INL): This error is defined as the highest-value or absolute
value that the running sum of DNL achieves. More simply, this is the worst-case
difference of the actual transition voltage to a given code and its corresponding ideal
transition voltage, for all codes.
• Total unadjusted error (TUE): This error is defined as the difference between the
actual transfer function and the ideal straight-line transfer function and includes all
forms of error.
33.6.2.6 Code jitter, non-monotonicity, and missing codes
Analog-to-digital converters are susceptible to three special forms of error:
• Code jitter: Code jitter is when, at certain points, a given input voltage converts to
one of the two values when sampled repeatedly. Ideally, when the input voltage is
infinitesimally smaller than the transition voltage, the converter yields the lower
code, and vice-versa. However, even small amounts of system noise can cause the
converter to be indeterminate, between two codes, for a range of input voltages
around the transition voltage.
Application information
K22F Sub-Family Reference Manual , Rev. 3, 7/2014
742
Freescale Semiconductor, Inc.
Содержание MK22FN256VDC12
Страница 2: ...K22F Sub Family Reference Manual Rev 3 7 2014 2 Freescale Semiconductor Inc...
Страница 136: ...Human machine interfaces K22F Sub Family Reference Manual Rev 3 7 2014 136 Freescale Semiconductor Inc...
Страница 164: ...Module clocks K22F Sub Family Reference Manual Rev 3 7 2014 164 Freescale Semiconductor Inc...
Страница 246: ...Functional description K22F Sub Family Reference Manual Rev 3 7 2014 246 Freescale Semiconductor Inc...
Страница 328: ...Kinetis Flashloader Status Error Codes K22F Sub Family Reference Manual Rev 3 7 2014 328 Freescale Semiconductor Inc...
Страница 360: ...Functional description K22F Sub Family Reference Manual Rev 3 7 2014 360 Freescale Semiconductor Inc...
Страница 388: ...Functional description K22F Sub Family Reference Manual Rev 3 7 2014 388 Freescale Semiconductor Inc...
Страница 402: ...Initialization application information K22F Sub Family Reference Manual Rev 3 7 2014 402 Freescale Semiconductor Inc...
Страница 500: ...Initialization application information K22F Sub Family Reference Manual Rev 3 7 2014 500 Freescale Semiconductor Inc...
Страница 670: ...Flash memory map for EzPort access K22F Sub Family Reference Manual Rev 3 7 2014 670 Freescale Semiconductor Inc...
Страница 680: ...Functional description K22F Sub Family Reference Manual Rev 3 7 2014 680 Freescale Semiconductor Inc...
Страница 744: ...Application information K22F Sub Family Reference Manual Rev 3 7 2014 744 Freescale Semiconductor Inc...
Страница 784: ...Functional description K22F Sub Family Reference Manual Rev 3 7 2014 784 Freescale Semiconductor Inc...
Страница 794: ...Initialization Application Information K22F Sub Family Reference Manual Rev 3 7 2014 794 Freescale Semiconductor Inc...
Страница 960: ...Example configuration for chained timers K22F Sub Family Reference Manual Rev 3 7 2014 960 Freescale Semiconductor Inc...
Страница 1036: ...Device mode IRC48 operation K22F Sub Family Reference Manual Rev 3 7 2014 1036 Freescale Semiconductor Inc...
Страница 1040: ...USB Voltage Regulator Module Signal Descriptions K22F Sub Family Reference Manual Rev 3 7 2014 1040 Freescale Semiconductor Inc...
Страница 1094: ...Initialization application information K22F Sub Family Reference Manual Rev 3 7 2014 1094 Freescale Semiconductor Inc...
Страница 1128: ...Initialization application information K22F Sub Family Reference Manual Rev 3 7 2014 1128 Freescale Semiconductor Inc...
Страница 1216: ...Application information K22F Sub Family Reference Manual Rev 3 7 2014 1216 Freescale Semiconductor Inc...
Страница 1298: ...Functional description K22F Sub Family Reference Manual Rev 3 7 2014 1298 Freescale Semiconductor Inc...
Страница 1312: ...K22F Sub Family Reference Manual Rev 3 7 2014 1312 Freescale Semiconductor Inc...