Each object comprises an OID concatenated with an instance number. In the case of these objects, the instance number is the decimal
equivalent of the MAC address; derive the instance number by converting each hex pair to its decimal equivalent. For example, the decimal
equivalent of E8 is 232, and so the instance number for MAC address 00:01:e8:06:95:ac is.0.1.232.6.149.172.
The value of dot1dTpFdbPort is the port number of the port off which the system learns the MAC address. In this case, of GigabitEthernet
1/21, the manager returns the integer 118.
Example of Fetching MAC Addresses Learned on the Default VLAN Using SNMP
----------------MAC Addresses on Force10 System------------------
Dell#show mac-address-table
VlanId Mac Address Type Interface State
1 00:01:e8:06:95:ac Dynamic Gi 1/21 Active
----------------Query from Management Station----------------------
>snmpwalk -v 2c -c techpubs 10.11.131.162 .1.3.6.1.2.1.17.4.3.1
SNMPv2-SMI::mib-2.17.4.3.1.1.0.1.232.6.149.172 = Hex-STRING: 00 01 E8 06 95 AC
Example of Fetching MAC Addresses Learned on a Non-default VLAN Using SNMP
In the following example, GigabitEthernet 1/21 is moved to VLAN 1000, a non-default VLAN. To fetch the MAC addresses learned on non-
default VLANs, use the object dot1qTpFdbTable. The instance number is the VLAN number concatenated with the decimal conversion of
the MAC address.
---------------MAC Addresses on Force10 System------------
Dell#show mac-address-table
VlanId Mac Address Type Interface State
1000 00:01:e8:06:95:ac Dynamic Gi 1/21 Active
---------------Query from Management Station----------------
>snmpwalk -v 2c -c techpubs 10.11.131.162 .1.3.6.1.2.1.17.7.1.2.2.1
Example of Fetching MAC Addresses Learned on a Port-Channel Using SNMP
Use dot3aCurAggFdbTable to fetch the learned MAC address of a port-channel. The instance number is the decimal conversion of the
MAC address concatenated with the port-channel number.
--------------MAC Addresses on Force10 System-------------------
Dell(conf)#do show mac-address-table
VlanId Mac Address Type Interface State
1000 00:01:e8:06:95:ac Dynamic Po 1 Active
-------------Query from Management Station----------------------
>snmpwalk -v 2c -c techpubs 10.11.131.162 .1.3.6.1.4.1.6027.3.2.1.1.5
SNMPv2-SMI::enterprises.6027.3.2.1.1.5.1.1.1000.0.1.232.6.149.172.1 = INTEGER: 1000
SNMPv2-SMI::enterprises.6027.3.2.1.1.5.1.2.1000.0.1.232.6.149.172.1 = Hex-STRING: 00 01 E8
06 95 AC
SNMPv2-SMI::enterprises.6027.3.2.1.1.5.1.3.1000.0.1.232.6.149.172.1 = INTEGER: 1
SNMPv2-SMI::enterprises.6027.3.2.1.1.5.1.4.1000.0.1.232.6.149.172.1 = INTEGER: 1
Deriving Interface Indices
The Dell Networking OS assigns an interface index to each (configured and unconfigured) physical and logical interface, and displays it in
the output of the show interface command.
The interface index is a binary number with bits that indicate the slot number, port number, interface type, and card type of the interface.
Dell Networking OS converts this binary index number to decimal, and displays it in the output of the
show interface
command.
Starting from the least significant bit (LSB):
•
the first 14 bits represent the card type
•
the next 4 bits represent the interface type
•
the next 7 bits represent the port number
•
the next 5 bits represent the slot number
•
the next 1 bit is 0 for a physical interface and 1 for a logical interface
•
the next 1 bit is unused
For example, the index 72925242 is 100010110001100000000111010 in binary. The binary interface index for TeGigabitEthernet 1/21 of a 48-
port 10/100/1000Base-T line card with RJ-45 interface. Notice that the physical/logical bit and the final, unused bit are not given. The
Simple Network Management Protocol (SNMP)
795
Содержание S3048-ON
Страница 1: ...Dell Configuration Guide for the S3048 ON System 9 11 2 5 ...
Страница 137: ...0 Gi 1 1 Gi 1 2 rx Flow N A N A 0 0 No N A N A yes Access Control Lists ACLs 137 ...
Страница 142: ...Figure 10 BFD Three Way Handshake State Changes 142 Bidirectional Forwarding Detection BFD ...
Страница 241: ...Dell Control Plane Policing CoPP 241 ...
Страница 287: ... RPM Synchronization GARP VLAN Registration Protocol GVRP 287 ...
Страница 428: ...Figure 53 Inspecting the LAG Configuration 428 Link Aggregation Control Protocol LACP ...
Страница 429: ...Figure 54 Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol LACP 429 ...
Страница 432: ...Figure 56 Inspecting a LAG Port on BRAVO Using the show interface Command 432 Link Aggregation Control Protocol LACP ...
Страница 433: ...Figure 57 Inspecting LAG 10 Using the show interfaces port channel Command Link Aggregation Control Protocol LACP 433 ...
Страница 477: ...Figure 73 Configuring Interfaces for MSDP Multicast Source Discovery Protocol MSDP 477 ...
Страница 478: ...Figure 74 Configuring OSPF and BGP for MSDP 478 Multicast Source Discovery Protocol MSDP ...
Страница 479: ...Figure 75 Configuring PIM in Multiple Routing Domains Multicast Source Discovery Protocol MSDP 479 ...
Страница 483: ...Figure 77 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 483 ...
Страница 484: ...Figure 78 MSDP Default Peer Scenario 3 484 Multicast Source Discovery Protocol MSDP ...
Страница 634: ...protocol spanning tree pvst no disable vlan 300 bridge priority 4096 634 Per VLAN Spanning Tree Plus PVST ...
Страница 745: ...Figure 104 Single and Double Tag TPID Match Service Provider Bridging 745 ...
Страница 746: ...Figure 105 Single and Double Tag First byte TPID Match 746 Service Provider Bridging ...