background image

NI 5622 Calibration Procedure

12

ni.com

Figure 1.  

Initial Connections for Power Splitter Amplitude Imbalance Correction

2.

Configure the signal generator to generate a 100 MHz, 0.6325 V

pk-pk 

sine wave.

3.

Wait the amount of time the manufacturer recommends for the output 
to settle.

4.

Measure the power (in watts) of the sine wave using the power meter. 
This value is the 

Measured Sine Wave Power of Port 1

 used in step 7.

5.

Make the following connection changes:

a.

Connect the power meter to input port 2 of the power splitter.

b.

Connect the 50

Ω

 terminator to input port 1 of the power splitter.

1

R&S NRP-Z91 Power Meter

2

Weinschel WA 1507R Splitter

3

50 

Ω

 Termination

4

To Signal Generator

2

S

1

1

2

4

3

Summary of Contents for PXIe-5622

Page 1: ...ements 4 Password 5 Calibration Interval 5 External Calibration 5 Self Calibration 5 Test Equipment 5 Test Conditions 7 Calibration Procedures 8 Initial Setup 9 Self Calibration 9 MAX 9 NI SCOPE SFP 9...

Page 2: ...select or click in the software such as menu items and dialog box options Bold text also denotes parameter names italic Italic text denotes variables emphasis a cross reference or an introduction to a...

Page 3: ...to Table 2 for installed file locations Calibration functions are LabVIEW VIs or C function calls in the NI SCOPE driver The C function calls are valid for any compiler capable of calling a 32 bit DL...

Page 4: ...ibration functions IVI Lib msc niscope lib NI SCOPE library for Microsoft C containing the entire NI SCOPE API including calibration functions LabVIEW examples instr niScope Directory of LabVIEW NI SC...

Page 5: ...a complete external calibration at least once every year You can shorten this interval based on the accuracy demands of your application Self Calibration You can perform self calibration whenever nece...

Page 6: ...dBc Hz 135 dBc Hz 148 dBc Hz Bandpass Amplitude Flatness Absolute Amplitude Accuracy SSB Phase Noise Timing Accuracy Adjustment Frequency Range 900 kHz to 820 MHz Power Measurement Level Setting Rang...

Page 7: ...20 Frequency Range 900 kHz to 820 MHz Power Measurement Range 4 dBm to 3 dBm Relative Shielding 100 dB Attenuator Mini Circuits VAT 3 SSB Phase Noise Frequency Range 900 kHz to 820 MHz Minimum Power W...

Page 8: ...ip to avoid ground loops Calibration Procedures The calibration process includes the following steps 1 Initial Setup Install the device and configure it in Measurement Automation Explorer MAX Note All...

Page 9: ...COPE Soft Front Panel SFP NI SCOPE MAX To initiate self calibration from MAX complete the following steps 1 Disconnect or disable any AC inputs to the digitizer 2 Launch MAX 3 Expand My System Devices...

Page 10: ...ope Cal Self Calibrate VI Note Because the session is a standard session rather than an external calibration session the new calibration constants are immediately stored in the EEPROM Therefore you ca...

Page 11: ...ollowing steps to determine the power splitter amplitude imbalance correction factor used to verify and adjust the NI 5622 1 Make the following connections a Connect the signal generator to the source...

Page 12: ...mends for the output to settle 4 Measure the power in watts of the sine wave using the power meter This value is the Measured Sine Wave Power of Port 1 used in step 7 5 Make the following connection c...

Page 13: ...Correction where a Measured Sine Wave Power of Port 1 b Measured Sine Wave Power of Port 2 The Splitter Power Correction in dB is used in the Absolute Amplitude Accuracy and Adjustment sections of thi...

Page 14: ...repair Absolute Amplitude Accuracy Complete the following steps to verify the absolute amplitude accuracy of the NI 5622 1 Make the following connections a Connect the signal generator to the source i...

Page 15: ...parameters resourceName The device name assigned by MAX idQuery VI_FALSE resetDevice VI_TRUE LabVIEW VI C C Function Call Call niScope_ConfigureChan Characteristics with the following parameters vi Th...

Page 16: ...parameters vi The instrument handle from niScope_init enforceRealtime NISCOPE_VAL_TRUE numRecords 1 minSampleRate 150 000 000 refPosition 0 0 minNumPts 524 288 LabVIEW VI C C Function Call CallniScope...

Page 17: ...ncy response of the digitizer call niScope_GetFrequencyResponse b To get the number of coefficients the FIR filter can accept call the NISCOPE_ATTR_EQUALIZATION_NUM_COEFFICIENTS attribute c To configu...

Page 18: ...xtract Single Tone Information VI This value is the Digitizer Measured Sine Wave Amplitude used in step 15 C C Perform an FFT on the array of data from step 13 LabVIEW VI C C Function Call Call niScop...

Page 19: ...esult to the Published Specifications for the current iteration listed in Table 4 If the results are within the selected test limit the device has passed this portion of the verification 16 Repeat ste...

Page 20: ...Range Vpk pk Bandpass Filter Input Voltage Vpk pk Reference Frequency MHz Specifications Limits Max Level dB Min Level dB 1 0 7 NISCOPE _VAL_ FALSE 0 35 53 0 4 0 4 2 1 05 3 1 0 5 0 4 0 4 4 1 5 5 1 4 0...

Page 21: ...o the source input port of the power splitter using the SMA cable b Connect the power meter to output port 1 of the power splitter c Connect channel 0 IF IN of the digitizer to output port 2 of the po...

Page 22: ...the following parameters resourceName The device name assigned by MAX idQuery VI_FALSE resetDevice VI_TRUE LabVIEW VI C C Function Call Call niScope_ConfigureChan Characteristics with the following pa...

Page 23: ...he following parameters vi The instrument handle from niScope_init enforceRealtime NISCOPE_VAL_TRUE numRecords 1 minSampleRate 150 000 000 refPosition 0 0 minNumPts 524 288 LabVIEW VI C C Function Cal...

Page 24: ...f the digitizer call niScope_GetFrequencyResponse b To get the number of coefficients the FIR filter can accept query the NISCOPE_ATTR_EQUALIZATION_NUM_COEFFICIENTS attribute c To configure the custom...

Page 25: ...LabVIEW Extract Single Tone Information VI This value is the Digitizer Measured Sine Wave Reference Amplitude used in step 23 C C Perform an FFT on the array of data from step 13 LabVIEW VI C C Funct...

Page 26: ...all niScope_GetFrequencyResponse b To get the number of coefficients the FIR filter can accept query the NISCOPE_ATTR_EQUALIZATION_NUM_COEFFICIENTS attribute c To configure the custom coefficients for...

Page 27: ...g the LabVIEW Extract Single Tone Information VI This value is the Digitizer Measured Sine Wave Amplitude used in step 23 C C Perform an FFT on the array of data from step 21 LabVIEW VI C C Function C...

Page 28: ...Reference Power Compare the result to the Published Specifications for the current iteration listed in Table 5 If the results are within the selected test limit the device has passed this portion of...

Page 29: ...ion Range Vpk pk Bandpass Filter Reference Frequency MHz Input Frequency MHz Published Specifications Max Level dB Min Level dB 1 1 NISCOPE_ VAL_FALSE 53 34 0 35 0 35 43 62 72 2 1 NISCOPE_ VAL_FALSE 1...

Page 30: ...ure the input impedance and the maximum input frequency using the niScope Configure Chan Characteristics VI LabVIEW VI C C Function Call Call niScope_init with the following parameters resourceName Th...

Page 31: ...mends for the output to settle LabVIEW VI C C Function Call Call niScope_ConfigureVertical with the following parameters vi The instrument handle from niScope_init channelList 0 range 1 0 offset 0 0 c...

Page 32: ...ne wave being generated using the Extract Single Tone Information VI C C Perform an FFT on the array of data from step 10 LabVIEW VI C C Function Call Call niScope_InitiateAcquisition with the followi...

Page 33: ...6 If the result is within the selected test limit the device has passed this portion of the verification 13 End the session using the niScope Close VI You have finished verifying the timing accuracy...

Page 34: ...ssion and obtain a session handle using the niScope Initialize VI 3 Configure the input impedance and the maximum input frequency using the niScope Configure Chan Characteristics VI LabVIEW VI C C Fun...

Page 35: ...ument handle from niScope_init channelList 0 range 1 0 offset 0 0 coupling NISCOPE_VAL_AC probeAttenuation 1 0 enabled NISCOPE_VAL_TRUE LabVIEW VI C C Function Call Call niScope_ConfigureHorizontal Ti...

Page 36: ...11 Initiate a waveform acquisition using the niScope Initiate Acquisition VI LabVIEW VI C C Function Call Call niScope_SetAttributeViBoolean with the following parameters vi The instrument handle fro...

Page 37: ...the niScope Fetch poly VI Select the WDT instance of the VI Use the default value for the timestamp Type parameter LabVIEW VI C C Function Call Call niScope_SetAttributeViInt32 with the following par...

Page 38: ...with the following parameters Handle The handle you obtained from ModtCreateSession Handle t0 Trigger start time of the acquired waveform dt Time interval between data points in the acquired waveform...

Page 39: ...ionalResample with the following parameters Handle The handle you obtained from ModtCreateSessionHandle t0 Trigger start time of the downconverted I Q signal data dt Time interval between data points...

Page 40: ...the selected test limit the device has passed this portion of the verification 16 Repeat steps 7 through 15 for each iteration in Table 7 17 End the session using the niScope Close VI You have finishe...

Page 41: ...Specifications Limits Iteration Bandpass Filter Input Frequency MHz Alias Frequency MHz Specifications Limits Carrier Offset 100 Hz 1 kHz 10 kHz 1 NISCOPE_ VAL_FALSE 53 1 53 1 90 dBc Hz 128 dBc Hz 14...

Page 42: ...nfigure the input impedance and the maximum input frequency using the niScope Configure Chan Characteristics VI LabVIEW VI C C Function Call Call niScope_init with the following parameters resourceNam...

Page 43: ...he Range value in Table 8for the current iteration offset 0 0 coupling NISCOPE_VAL_AC probeAttenuation 1 0 enabled NISCOPE_VAL_TRUE LabVIEW VI C C Function Call Call niScope_ConfigureHorizontal Timing...

Page 44: ...e VI Use the default value for the timestamp Type parameter LabVIEW VI C C Function Call Call niScope_Commit with the following parameter vi The instrument handle from niScope_init LabVIEW VI C C Func...

Page 45: ...a where df frequency resolution of the spectrum in Hz x average power spectral density data in Vrms 2 Hz Compare the result to the Published Specifications for the current iteration listed in Table 8...

Page 46: ...ct the signal generator to the source input port of the power splitter b Connect the power meter to output port 1 of the power splitter c Connect channel 0 IF IN of the digitizer to output port 2 of t...

Page 47: ...ait the amount of time the manufacturer recommends for the output to settle 1 R S NRP Z91 Power Meter 2 Weinschel WA 1507R Splitter 3 To Signal Generator LabVIEW VI C C Function Call Call niScope_CalS...

Page 48: ...ion in Table 9 9 Configure the signal generator to output a 15 MHz 1 25 Vpk pk sine wave 10 Wait the amount of time the manufacturer recommends for the output of the signal generator to settle 11 Adju...

Page 49: ...wer Meter Measure Sine Wave Power Use this value to calculate the Measured Sine Wave Amplitude used in step 13d where a Power Meter Measure Sine Wave Power b Splitter Power Correction d Adjust the fre...

Page 50: ...ul adjustment LabVIEW VI C C Function Call Call niScope_CalAdjustFrequency Response with the following parameters sessionHandle The session handle from niScope_CalStart channelName 0 range 1 stimulusF...

Page 51: ...complete the following steps 1 Select the device from which you want to retrieve information from My System Devices and Interfaces PXI System 2 Select the Calibration tab in the lower right corner You...

Page 52: ...hCount niScope Cal Fetch Date VI niScope_CalFetchDate niScope Cal Fetch Misc Info VI niScope_CalFetchMiscInfo niScope Cal Fetch Temperature VI niScope_CalFetchTemperature niScope Cal Store Misc Info V...

Reviews: