29
R
e
f.
N
o
0
0
7
6
1
0
0
7
0
2
0
0
8
5
5
2
4
0
1
.1
6
0
8
.1
0
5
4
3
.1
4
0
3
.1
2
0
0
3
.1
0
1
0
.1
0
3
1
8
.1
4
1
0
.1
1
8
0
1
.1
0
0
3
.1
0
0
7
0
3
0
0
7
0
4
0
0
7
0
5
0
0
2
5
2
0
0
7
0
6
0
0
7
0
7
0
0
7
6
2
0
0
7
4
0
0
0
7
4
1
0
0
7
4
2
0
0
7
4
3
0
0
7
3
2
2
9
0
7
.1
0
0
9
.0
0
0
7
3
3
0
0
7
4
4
0
0
7
5
0
0
1
0
0
4
0
0
2
8
0
4
3
5
4
.1
0
0
0
.1
0
0
7
7
0
H
IT
1
0
s
p
e
c
ia
l
Q
ty
1
1
1
4
1
1
6
6
1
1
1
1
1
1
1
1
1
2
1
2
6
2
1
1
1
1
1
R
e
f.
N
o
0
0
7
0
1
0
0
7
0
2
0
5
4
3
.1
4
0
3
.1
2
0
0
3
.1
0
1
0
.1
0
3
1
8
.1
4
1
0
.1
1
8
0
1
.1
0
0
3
.1
0
0
7
0
3
0
0
7
0
4
0
0
7
0
5
0
0
2
5
2
0
0
7
0
6
0
0
7
0
7
0
0
7
3
9
0
0
7
4
0
0
0
7
4
1
0
0
7
4
2
0
0
7
4
3
0
0
7
3
2
2
9
0
7
.1
0
0
9
.0
0
0
7
3
3
0
0
7
4
4
0
0
7
5
0
0
1
0
0
4
0
0
2
8
0
4
3
5
4
.1
0
0
0
.1
0
0
7
7
0
H
IT
1
0
Q
ty
1
1
1
1
6
6
1
1
1
1
1
1
1
1
1
2
1
2
6
2
1
1
1
1
1
R
e
f.
N
o
0
0
6
0
1
0
0
6
0
2
0
5
4
3
.1
4
0
3
.1
2
0
0
3
.1
0
1
0
.1
0
3
0
8
.1
4
0
9
.1
1
8
0
1
.1
0
0
3
.1
0
0
6
0
3
0
0
6
0
4
0
0
6
0
5
0
0
6
3
2
0
0
6
0
6
0
0
7
0
7
0
0
6
3
7
0
0
6
3
8
0
0
6
3
9
0
0
6
4
0
0
0
6
4
1
2
9
0
7
.1
0
0
9
.0
0
0
6
4
3
0
0
6
4
4
0
0
6
4
9
0
0
6
5
1
2
2
1
1
.2
1
1
7
.0
0
0
6
6
0
0
2
6
0
2
4
3
5
4
.1
0
0
0
.1
0
0
6
7
0
H
IT
6
Q
ty
1
1
1
1
5
5
1
1
1
1
1
1
1
1
1
3
1
2
2
1
1
2
1
1
P
o
s
1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
2
2
6
2
8
2
9
3
0
3
1
3
2
4
0
4
1
4
2
5
0
D
e
s
c
ri
p
ti
o
n
R
ig
h
t
h
a
n
d
c
a
s
in
g
c
o
m
p
le
te
L
e
ft
h
a
n
d
c
a
s
in
g
w
it
h
n
a
m
e
p
l.
C
a
rr
y
in
g
h
a
n
d
le
B
u
tt
o
n
h
e
a
d
r
iv
e
t
6
x
1
4
C
o
u
n
te
rs
u
n
k
s
c
re
w
9
0
°
M
6
x
1
0
W
a
s
h
e
r
S
o
c
k
e
t
h
e
a
d
c
a
p
s
c
re
w
S
q
u
a
re
n
u
t
M
6
F
ro
n
t
g
ri
p
p
e
r
a
s
s
e
m
b
ly
R
e
a
r
g
ri
p
p
e
r
a
s
s
e
m
b
ly
F
o
rw
a
rd
m
o
ti
o
n
l
e
v
e
r
c
o
m
p
le
te
S
h
e
a
ri
n
g
p
in
J
a
w
o
p
e
n
in
g
l
e
v
e
r,
c
o
m
p
le
te
A
n
c
h
o
r
b
o
lt
c
o
m
p
le
te
L
e
v
e
r
re
v
e
rs
e
m
o
ti
o
n
B
a
c
k
-p
u
s
h
l
e
v
e
r
ri
g
h
t-
h
a
n
d
B
a
c
k
-p
u
s
h
l
e
v
e
r
le
ft
-h
a
n
d
B
o
lt
r
e
v
e
rs
e
m
o
ti
o
n
l
e
v
e
r
B
o
lt
j
a
w
o
p
e
n
in
g
l
e
v
e
r
B
o
lt
b
a
c
k
-p
u
s
h
l
e
v
e
r
L
o
c
k
in
g
w
a
s
h
e
r
R
S
6
P
u
ll
s
p
in
d
le
P
o
p
e
i
n
s
e
rt
io
n
g
u
id
e
s
le
e
v
e
D
is
ta
n
c
e
s
o
c
k
e
t
G
u
id
e
r
o
lle
r
C
y
lin
d
e
r
p
in
L
e
v
e
r
R
o
p
e
R
e
e
l
S
a
fe
ty
l
a
tc
h
C
a
s
e
H
IT
6
/
1
0
/
1
0
s
p
e
c
ia
l
R
e
s
e
rv
e
d
e
ls
l
is
te
S
p
a
re
p
a
rt
s
l
is
t
B
e
s
k
ri
v
e
ls
e
S
id
e
d
e
k
s
e
l
-
h
ø
y
re
S
id
e
d
e
k
s
e
l
–
v
e
n
s
tr
e
m
e
d
n
a
v
n
e
s
k
ilt
B
æ
re
h
å
n
d
ta
k
N
a
g
le
S
e
n
k
e
s
k
ru
e
9
0
°
M
6
x
1
0
S
k
iv
e
U
m
b
ra
c
o
s
k
ru
e
M
6
x
3
0
/
M
6
x
3
5
M
u
tt
e
r
M
6
t
il
s
id
e
d
e
k
s
e
l
K
le
m
b
a
k
k
e
-
f
ro
n
t
K
le
m
b
a
k
k
e
-
b
a
k
J
e
k
k
e
s
p
a
k
–
fr
e
m
o
v
e
r
k
o
m
p
le
tt
S
k
jæ
rb
o
lt
H
å
n
d
ta
k
f
o
r
w
ir
e
in
n
fø
ri
n
g
F
e
s
te
b
o
lt
J
e
k
k
e
s
p
a
k
–
b
e
v
e
g
e
ls
e
b
a
k
o
v
e
r
S
p
a
k
–
b
e
v
e
g
e
ls
e
b
a
k
o
v
e
r,
h
ø
y
re
S
p
a
k
–
b
e
v
e
g
e
ls
e
b
a
k
o
v
e
r,
v
e
n
s
tr
e
B
o
lt
B
o
lt
B
o
lt
L
å
s
e
s
k
iv
e
Ø
9
x
1
.1
B
o
lt
W
ir
e
fø
ri
n
g
D
is
ta
n
s
e
f
ø
ri
n
g
F
ø
ri
n
g
S
y
lin
d
e
r
p
in
n
e
S
p
a
k
W
ir
e
R
e
e
l
S
a
fe
ty
L
a
s
te
k
ro
k
C
a
s
e