R
= 3 k
Load
W
AV
CC
C
= 100 pF
Load
2
DAC Output
R
O/P(DAC12.x)
I
Load
Conversion 1
Conversion 2
V
OUT
Conversion 3
Glitch
Energy
±1/2 LSB
±1/2 LSB
t
settleLH
t
settleHL
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D – AUGUST 2010 – REVISED DECEMBER 2015
www.ti.com
5.45 12-Bit DAC, Reference Input Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V
CC
MIN
TYP
MAX
UNIT
AV
CC
AV
CC
DAC12IR = 0
(1) (2)
/ 3
+ 0.2
Reference input voltage
VeREF+
2.2 V, 3 V
V
range
AV
CC
DAC12IR = 1
(3) (4)
AV
CC
+ 0.2
DAC12_0 IR = DAC12_1 IR = 0
20
M
Ω
DAC12_0 IR = 1, DAC12_1 IR = 0
48
Ri
(VREF+)
,
Reference input resistance
(5)
2.2 V, 3 V
DAC12_0 IR = 0, DAC12_1 IR = 1
48
Ri
(VeREF+)
k
Ω
DAC12_0 IR = DAC12_1 IR = 1,
24
DAC12_0 SREFx = DAC12_1 SREFx
(6)
(1)
For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
(2)
The maximum voltage applied at reference input voltage terminal VeREF+ = (AV
CC
– V
E(O)
) / (3 × (1 + E
G
)).
(3)
For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
(4)
The maximum voltage applied at reference input voltage terminal VeREF+ = (AV
CC
– V
E(O)
) / (1 + E
G
).
(5)
This impedance depends on tradeoff in power savings. Current devices have 48 k
Ω
for each channel when divide is enabled. Can be
increased if performance can be maintained.
(6)
When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel
reducing the reference input resistance.
5.46 12-Bit DAC, Dynamic Specifications
V
REF
= V
CC
, DAC12IR = 1 (see
Figure 5-19
and
Figure 5-20
), over recommended ranges of supply voltage and operating free-
air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V
CC
MIN
TYP
MAX
UNIT
DAC12AMPx = 0
→
{2, 3, 4}
60
120
DAC12_xDAT = 800h,
t
ON
DAC12 on time
Error
V(O)
< ±0.5 LSB
(1)
DAC12AMPx = 0
→
{5, 6}
2.2 V, 3 V
15
30
µs
(see
Figure 5-19
)
DAC12AMPx = 0
→
7
6
12
DAC12AMPx = 2
100
200
DAC12_xDAT =
t
S(FS)
Settling time, full scale
DAC12AMPx = 3, 5
2.2 V, 3 V
40
80
µs
80h
→
F7Fh
→
80h
DAC12AMPx = 4, 6, 7
15
30
DAC12AMPx = 2
5
DAC12_xDAT =
Settling time, code to
t
S(C-C)
3F8h
→
408h
→
3F8h,
DAC12AMPx = 3, 5
2.2 V, 3 V
2
µs
code
BF8h
→
C08h
→
BF8h
DAC12AMPx = 4, 6, 7
1
DAC12AMPx = 2
0.05
0.35
DAC12_xDAT =
SR
Slew rate
DAC12AMPx = 3, 5
2.2 V, 3 V
0.35
1.10
V/µs
80h
→
F7Fh
→
80h
(2)
DAC12AMPx = 4, 6, 7
1.50
5.20
DAC12_xDAT =
Glitch energy
DAC12AMPx = 7
2.2 V, 3 V
35
nV-s
800h
→
7FFh
→
800h
(1)
R
Load
and C
Load
connected to AV
SS
(not AV
CC
/2) in
Figure 5-19
.
(2)
Slew rate applies to output voltage steps
≥
200 mV.
Figure 5-19. Settling Time and Glitch Energy Testing
44
Specifications
Copyright © 2010–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links:
MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Содержание MSP430F5333
Страница 110: ......