B
A
C
2 7 1 . 0 0 6 2 5
4 7 2 . 9 0 0 2 6
4 1 1 . 8 0 0 3 0
4 1 1 . 8 0 0 3 0
2 7 6 . 0 0 1 1 8
2 8 7 . 0 0 0 6 9
4 1 9 . 0 0 0 3 0
2 3 1 . 9 0 0 5 9
4 1 1 . 8 0 0 3 0
7 1 . 2 3 2 . 0 0 1
2 1 6 . 0 0 0 3 2
2 7 5 . 0 0 9 3 6
A ( 2 : 1 )
2 7 5 . 0 0 9 9 4
4 3 3 . 6 0 0 6 8
p e r p e n d i c u l a r i t
m e s u r e d e l a
E p a i s s e u r s e l o n
M 3 x 6 ( 4 x )
C o u p l e d e s e r r a g e = 1 N m
C o l l ( L o c t i t e 2 4 3 )
( 2 x )
C o u p l e d e s e r r a g e = 1 N m
C o l l ( L o c t i t e 2 4 3 )
M 3 x 6 ( 2 x )
C o l l ( L o c t i t e 2 4 3 )
M 3 x 6 ( 4 x )
( 2 x )
( 2 x )
( 6 x )
M 4 x 5 ( 6 x )
C o l l ( L o c t i t e 2 4 3 )
4 3 3 . 6 0 0 9 1
4 1 1 . 9 0 0 3 0
7 1 . 2 3 3 . 0 0 1
4 2 1 . 1 0 0 3 0
2 7 5 . 0 1 0 1 2
B ( 2 : 1 )
2 7 5 . 0 1 0 1 3
C o l l ( L o c t i t e 2 4 3 )
C o u p l e d e s e r r a g e = 2 N m
M 4 x 8 ( 3 x )
M o n t s u r 7 1 . 2 3 2 . 0 0 1
C o u p l e d e s e r r a g e = 1 N m
( 2 x )
( 4 x )
2 2 5 . 0 0 1 2 4
2 7 5 . 0 1 0 1 9
4 3 5 . 3 0 0 4 1
4 2 5 . 5 0 0 3 0
2 3 9 . 0 0 0 7 0
4 3 5 . 3 0 0 4 4
2 7 5 . 0 0 9 9 4
2 7 5 . 0 1 0 6 5
D ( 2 : 1 )
C o l l ( L o c t i t e 6 4 8 )
( 6 x )
4 1 8 . 2 0 0 5 0
4 3 5 . 3 0 0 4 2
2 7 5 . 0 1 0 1 9
G r a i s s ( l e s a r t i c u l a t i o n s a v e c d u M o l y k o t e D X )
C o u p l e d e s e r r a g e d e s v i s n o n s p c i f i e
s e l o n 3 2 8 . 0 0 0 0 6 c l a s s e 4 . 8
( C o l l )
M 8 x 8 ( 4 x )
( 6 x )
( 6 x )
( 6 x )
( 6 x )
C o l l e ( L o c t i t e 2 4 3 )
G r . C h a r i o t d e m e s u r e
2 5 9 . 9 0 1 0 4
2 7 6 . 0 0 1 3 0
2 7 5 . 0 0 8 3 3
B
2 3 9 . 0 0 0 7 0
4 3 5 . 3 0 0 4 2
4 3 5 . 3 0 0 4 4
M 4 x 1 0
A m o n t e r a v e c c h a r i o t d e t r a n s p o r t s e l o n d e s s i n 2 4 0 . 0 0 0 6 0
C o l l ( L o c t i t e 6 4 8 )
( 6 x )
( 6 x )
( 6 x )
B
A
B
D
D
C ( 2 : 1 )
( 2 x )
( 5 x )
( 2 x )
2 8 5 . 0 0 1 7 9
B
A
D
A
B
B
D
( 6 x )