Theory of operation
P3403E/A
11
3 EY 500 DB FORMAT
Simple conversion between dB and linear scale is obtained in a computer by
using 10 dB x log(2) = 3.0103··· dB as a reference value in the dB domain. The
EY 500 algorithms use 16-bit words to represent dB quantities.
A B
XXXXXXXX XXXXXXXX
The eight most significant bits (A) correspond to the integer part relative
3.0103··· dB and the eight least significant bits (B) correspond to the fractional
part. Thus, the least significant bit corresponds to an increase/decrease of
3.0103··· dB/256
.
0.01 dB. Assuming as an example the linear decimal number
178.125 the value of A and B becomes
10 dB x log(178.125) = 22.507··· dB
A B
22.507···/3.0103··· = 7.4767··· = 00000111.01111010
Conversion to linear scale is based on the relation
10
0.30103··· x A.B
= 2
A.B
= 2
A+0.B
= 2
A
x 2
0.B
Evidently, the upper byte A is simply the exponent in binary floating point
format, and 2 to the power 0.B is the mantissa. Thus, the mantissa can be
obtained by using B as the address in an antilog lookup table containing 256
elements, and a similar technique can be used for the inverse conversion from
linear to dB scale.
4 BOTTOM DETECTION
The bottom detection algorithm is implemented solely in software. The
algorithm is designed with emphasis on reliability in the sense that erroneous
depth detections are never output. Whenever uncertainty is associated with a
detection the algorithm outputs zero depth to indicate that no reliable detection
was obtained. The algorithm is designed to maintain bottom lock for a
discontinuous jump in bottom depth, and special features have been included
in order to avoid false bottom detection on schools of fish. Operational
experience has shown that the algorithm indeed is quite robust; erroneous
bottom detections are virtually absent, a dense school of fish does not confuse
the algorithm, rough bottom contours cause only a few dropouts to occur.
Basically the algorithm is implemented as a fourfold tracking algorithm. For
each ping up to four candidate bottom returns are identified, and their
association with previous bottom candidates is determined in order to perform
Содержание EY500
Страница 1: ...6LPUDG 3RUWDEOH VFLHQWLILF HFKR VRXQGHU...
Страница 2: ......
Страница 20: ...System familiarization 14 P3400 B...
Страница 44: ...Operation 10 P3402 C Blank page...
Страница 52: ...Operation 18 P3402 C Blank page...
Страница 53: ...Simrad EY 500 P3402 C 19 Figure 4 Scope plot showing 300 samples of transceiver data...
Страница 140: ...Simrad EY 500 20 P3403E A...
Страница 164: ...Maintenance Figure Transceiver with PC...
Страница 165: ...500 senes echo sounders Vlew transceiver...
Страница 166: ...Maintenance Figure interconnection...
Страница 170: ...Maintenance Figure...
Страница 174: ...Maintenance...
Страница 179: ...500 series portable echo sounders Figure tra nsce i ver...
Страница 183: ...500 series echo sounders power...
Страница 185: ...500 series portable echo sounders...
Страница 209: ...Simrad EK 500 EY 500 P2260 E 7 WINCH 2 WINCH 3 WINCH 1 CD481 Figure 1 Rigging of a vessel for sphere calibration...
Страница 224: ...Calibration 22 P2260 E Figure 8...
Страница 225: ...Simrad EK 500 EY 500 P2260 E 23 Figure 9...
Страница 232: ...Calibration 30 P2260 E Blank page...
Страница 234: ...Calibration 32 P2260 E Blank page...
Страница 239: ......
Страница 240: ......
Страница 241: ......
Страница 242: ......
Страница 243: ......
Страница 244: ......
Страница 245: ......
Страница 246: ......
Страница 247: ......
Страница 248: ......
Страница 249: ......
Страница 250: ......
Страница 251: ......
Страница 252: ......
Страница 253: ......
Страница 254: ......
Страница 255: ......
Страница 256: ......
Страница 257: ......
Страница 258: ......
Страница 259: ......
Страница 260: ......