9
Installation of the inverter and enclosure
design
1
1.4.2
Cooling system types for inverter enclosure
From the enclosure that contains the inverter, the heat of the inverter and other equipment (transformers, lamps,
resistors, etc.) and the incoming heat such as direct sunlight must be dissipated to keep the in-enclosure temperature
lower than the permissible temperatures of the in-enclosure equipment including the inverter.
The cooling systems are classified as follows in terms of the cooling calculation method.
1) Cooling by natural heat dissipation from the enclosure surface (Totally enclosed type)
2) Cooling by heat sink (Aluminum heatsink, etc.)
3) Cooling by ventilation (Forced ventilation type, pipe ventilation type)
4) Cooling by heat exchanger or cooler (Heat pipe, cooler, etc.)
Cooling System
Enclosure Structure
Comment
Natural
cooling
Natural ventilation
(Enclosed, open type)
Low in cost and generally used, but the enclosure size
increases as the inverter capacity increases. For
relatively small capacities.
Natural ventilation (Totally
enclosed type)
Being a totally enclosed type, the most appropriate for
hostile environment having dust, dirt, oil mist, etc. The
enclosure size increases depending on the inverter
capacity.
Forced
cooling
Heatsink cooling
Having restrictions on the heatsink mounting position
and area, and designed for relative small capacities.
Forced ventilation
For general indoor installation. Appropriate for enclosure
downsizing and cost reduction, and often used.
Heat pipe
Totally enclosed type for enclosure downsizing.
INV
INV
INV
Heatsink
INV
INV
Heat
pipe
Содержание FR-A741-11K
Страница 7: ...MEMO ...
Страница 216: ...209 MEMO ...