background image

LTC3810-5

16

38105fd

The most important parameter in high voltage applications 

is breakdown voltage BV

DSS

. Both the top and bottom 

MOSFETs will see full input voltage plus any additional 

ringing on the switch node across its drain-to-source dur-

ing its off-time and must be chosen with the appropriate 

breakdown specification. The LTC3810-5 is designed to 

be used with a 4.5V to 14V gate drive supply (DRV

CC

 pin) 

for driving logic-level MOSFETs (V

GS(MIN)

 ≥ 4.5V).

For maximum efficiency, on-resistance R

DS(ON)

 and input 

capacitance should be minimized. Low R

DS(ON)

 minimizes 

conduction losses and low input capacitance minimizes 

transition losses. MOSFET input capacitance is a combi-

nation of several components but can be taken from the 

typical “gate charge” curve included on most data sheets 

(Figure 6).

the top MOSFET but is not directly specified on MOSFET 

data sheets. C

RSS

 and C

OS

 are specified sometimes but 

definitions of these parameters are not included.
When the controller is operating in continuous mode the 

duty cycles for the top and bottom MOSFETs are given by:

 

 

Main Switch Duty Cycle

=

V

OUT

V

IN

Synchronous Switch Duty Cycle

=

V

IN

– V

OUT

V

IN

The power dissipation for the main and synchronous 

MOSFETs at maximum output current are given by:

 

 

P

TOP

=

V

OUT

V

IN

I

MAX

(

)

2

(

ρ

T

)R

DS(ON)

+

V

IN

2

I

MAX

2

(R

DR

)(C

MILLER

) •

1

V

CC

– V

TH(IL)

+

1

V

TH(IL)

(f)

P

BOT

=

V

IN

– V

OUT

V

IN

(I

MAX

)

2

(

ρ

T

)R

DS(0N)

where 

ρ

T

 is the temperature dependency of R

DS(ON)

, R

DR

 

is the effective top driver resistance (approximately 2Ω at 

V

GS

 = V

MILLER

), V

IN

 is the drain potential and the change 

in drain potential in the particular application. V

TH(IL)

 is 

the data sheet specified typical gate threshold voltage 

specified in the power MOSFET data sheet at the specified 

drain current. C

MILLER

 is the calculated capacitance using 

the gate charge curve from the MOSFET data sheet and 

the technique described above.
Both MOSFETs have I

2

R losses while the topside N-channel 

equation incudes an additional term for transition losses, 

which peak at the highest input voltage. For high input 

voltage low duty cycle applications that are typical for the 

LTC3810-5, transition losses are the dominate loss term and 

therefore using higher R

DS(ON)

 device with lower C

MILLER

 

usually provides the highest efficiency. The synchronous 

MOSFET losses are greatest at high input voltage when 

the top switch duty factor is low or during a short-circuit 

when the synchronous switch is on close to 100% of 

Figure 6. Gate Charge Characteristic

+

V

DS

V

IN

V

GS

MILLER EFFECT

Q

IN

a

b

C

MILLER

 = (Q

B

 – Q

A

)/V

DS

V

GS

V

+

38105 F06

applicaTions inForMaTion

The curve is generated by forcing a constant input cur-

rent into the gate of a common source, current source 

loaded stage and then plotting the gate voltage versus 

time. The initial slope is the effect of the gate-to-source 

and the gate-to-drain capacitance. The flat portion of the 

curve is the result of the Miller multiplication effect of the 

drain-to-gate capacitance as the drain drops the voltage 

across the current source load. The upper sloping line is 

due to the drain-to-gate accumulation capacitance and 

the gate-to-source capacitance. The Miller charge (the 

increase in coulombs on the horizontal axis from a to b 

while the curve is flat) is specified for a given V

DS

 drain 

voltage, but can be adjusted for different V

DS

 voltages by 

multiplying by the ratio of the application V

DS

 to the curve 

specified V

DS

 values. A way to estimate the C

MILLER

 term 

is to take the change in gate charge from points a and b 

on a manufacturers data sheet and divide by the stated 

V

DS

 voltage specified. C

MILLER

 is the most important se-

lection criteria for determining the transition loss term in 

Содержание LTC3810-5

Страница 1: ...ase Station Power Supplies n Networking Equipment Servers n Automotive and Industrial Control Systems n High Voltage Operation Up to 60V n Large 1 Gate Drivers n No Current Sense Resistor Required n D...

Страница 2: ...ODE SYNC ITH VFB PLL LPF SENSE NC NC NC SENSE BGRTN BG DRVCC NC I ON NC NC NC BOOST TG SW SS TRACK NC NC SHDN UVIN NDRV EXTV CC INTV CC TJMAX 125 C JA 34 C W EXPOSED PAD PIN 33 IS SGND MUST BE SOLDERE...

Страница 3: ...2 V ISHDN SHDN Pin Input Current 0 1 A VUVIN UVIN Undervoltage Lockout UVIN Rising UVIN Falling Hysteresis l l 0 86 0 78 0 07 0 89 0 80 0 10 0 92 0 82 0 12 V V V VVCCUV INTVCC Undervoltage Lockout Lin...

Страница 4: ...EXTVCC 6V VEXTVCC 15V 5 2 5 5 5 8 V DVEXTVCC 1 VEXTVCC VINTVCC at Dropout ICC 20mA VEXTVCC 5V 75 150 mV DVLOADREG 1 INTVCC Load Regulation from EXTVCC ICC 0mA to 20mA VEXTVCC 10V 0 01 VINTVCC 2 INTVCC...

Страница 5: ...RT 0 1 FRONT PAGE CIRCUIT 200 s DIV VOUT 5V DIV VFB 0 5V DIV IL 5A DIV 38105 G04 VIN 48V FRONT PAGE CIRCUIT 500 s DIV 38105 G05 VOUT 5V DIV SS TRACK 0 5V DIV VFB 0 5V DIV IL 5A DIV VIN 48V ILOAD 1A MO...

Страница 6: ...300 400 3 0 VRNG 2V 1 4V 1V 0 7V 0 5V ION CURRENT A 10 10 ON TIME ns 100 1000 10000 100 1000 10000 38105 G12 VON INTVCC VON VOLTAGE V 0 400 500 700 1 5 2 5 38105 G13 300 200 0 5 1 2 3 100 0 600 ON TI...

Страница 7: ...VINTVCC 5V 50 25 75 25 0 50 100 150 125 TEMPERATURE C R DS ON 1 25 1 50 1 75 38105 G20 1 00 0 75 0 50 0 25 VBOOST VINTVCC 5V DRVCC BOOST VOLTAGE V 4 5 7 9 11 13 PEAK SOURCE CURRENT A 3 0 2 5 2 0 1 5 1...

Страница 8: ...stics INTVCC VOLTAGE V 0 200 250 300 6 10 38105 G27 150 100 2 4 8 12 14 50 0 INTV CC CURRENT A 50 25 75 25 0 50 100 150 125 TEMPERATURE C SS TRACK CURRENT A 2 3 38105 G28 1 0 LOAD CURRENT A 0 2 0 3 0...

Страница 9: ...tage ranges from 0V to 2 6V with 1 2V corresponding to zero sense voltage zero current VFB Pin7 FeedbackInput ConnectVFBthrougharesistor divider network to VOUT to set the output voltage PLL LPF Pin 8...

Страница 10: ...resistor or MOSFET SW Pin 25 Switch Node Connection to Inductor and Bootstrap Capacitor The voltage swing at this pin is 0 7V a Schottky diode external voltage drop to VIN TG Pin 26 Top Gate Drive Th...

Страница 11: ...24 SW 25 TG BOOST CB 26 27 EXTVCC 15 INTVCC NDRV 16 14 UV 0 72V OV 0 88V CVCC VOUT M2 M1 M3 L1 COUT CIN SS TRACK DB 4 VIN VIN SENSE 20 OVERTEMP SENSE FOLDBACK 0 8V REF 5V REG INTVCC ITH 5 8 ION 31 VI...

Страница 12: ...behaves as a constant frequency part against the load and supply variations Pulling the SHDN pin low forces the controller into its shutdown state turning off both M1 and M2 Forcing a voltage above 1...

Страница 13: ...w side driver drives the bottom side MOSFET see Figure 3 The bottom side driver is supplied directly from the DRVCC pin The top MOSFET drivers are biased from floating bootstrap capacitor CB which nor...

Страница 14: ...OSFETissizedforproperdissipationand thedrivershutdown restartforVOUT 4 7Visdisabled This scheme is less efficient but may be necessary if VOUT 4 7V and a boost network is not desired 3 Tricklechargemo...

Страница 15: ...e tied to SGND or INTVCC in which case the nominal sense voltage defaults to 95mV or 215mV respectively Connecting the SENSE and SENSE Pins The LTC3810 5 can be used with or without a sense re sistor...

Страница 16: ...LLER is the calculated capacitance using the gate charge curve from the MOSFET data sheet and the technique described above BothMOSFETshaveI2RlosseswhilethetopsideN channel equation incudes an additio...

Страница 17: ...ration as the input supply varies f VOUT VVON RON 76pF HZ Toholdfrequencyconstantduringoutputvoltagechanges tie the VON pin to VOUT or to a resistive divider from VOUT when VOUT 2 4V The VON pin has i...

Страница 18: ...t occurs at the highest VIN To guarantee that ripple current does not exceed a specified maximum the inductance should be chosen according to L VOUT f IL MAX 1 VOUT VIN MAX Once the value for L is kno...

Страница 19: ...higher ESR and lower RMS current ratings A good approach is to use a combination of aluminum electrolyticsforbulkcapacitanceandceramicsforlowESR and RMS current If the RMS current cannot be handled by...

Страница 20: ...connected to the BOOST pin supplies the gate drive voltage for the topside MOSFET This capacitor is charged through diode DB from DRVCCwhentheswitchnodeislow WhenthetopMOSFET turns on the switch node...

Страница 21: ...tart cycles are then attempted at low duty cycle intervals to try to bring the output back up see Figure 10 This fault timeout operation is enabled by choosing the choosing RNDRV such that the resisto...

Страница 22: ...t up Once the INTVCC DRVCC voltage reaches the trickle charge UV threshold of 9V the drivers will turn on andstartdischargingCINTVCC CDRVCC ataratedetermined by the driver current IG In order to ensur...

Страница 23: ...he modulator the output filter and load and the feedback amplifier with its compensation network All of these components affect loop behavior and must be ac counted for in the loop compensation The mo...

Страница 24: ...in one of three ways measured directly from a breadboard or if the appropriate parasitic values are known simulated or generated from the modulator transfer function Mea surement will give more accur...

Страница 25: ...ossoverfrequencyabout25 of the switching frequency for maximum bandwidth Al though it may be tempting to go beyond fSW 4 remember that significant phase shift occurs at half the switching frequency th...

Страница 26: ...frequency operation To prevent forcing current back into the main power supply potentially boosting the input supply to a dangerous voltage level forced continuous modeofoperationisdisabledwhentheTRAC...

Страница 27: ...asheetstypicallyspecifynominalandmaximumvalues forRDS ON butnotaminimum Areasonableassumption is that the minimum RDS ON lies the same percentage below the typical value as the maximum lies above it C...

Страница 28: ...eedback divider shown in Figure 16 In this tracking mode VOUT1 mustbesethigherthanVOUT2 Toimplement the ratiometric tracking the ratio of the divider should be exactly the same as the master IC s feed...

Страница 29: ...the shifted common mode voltage The top two current sources are of the same amplitude In the coincident mode the TRACK SS voltage is substantially higher than 0 8V at steady state and effectively turn...

Страница 30: ...example if RDS ON 0 01 andRL 0 005 thelosswillrangefrom15mW to 1 5W as the output current varies from 1A to 10A 2 Transition loss This loss arises from the brief amount of time the top MOSFET spends i...

Страница 31: ...teepropercurrentlimitatworst caseconditions increasenominalVSNS byatleast50 to320mV bytying VRNG to 2V To check if the current limit is acceptable at VSNS 320mV assume a junction temperature of about...

Страница 32: ...e layer should not have any traces and it should be as close as possible to the layer with power MOSFETs Place CIN COUT MOSFETs D1 and inductor all in one compact area It may help to have some compone...

Страница 33: ...to ensure proper opera tion of the controller Segregate the signal and power grounds All small signal components should return to the SGND pin at one point which is then tied to the PGND pin close to...

Страница 34: ...k LTC3810 5 EXTVCC TG SENSE BG BGRTN DRVCC INTVCC NDRV BOOST 38105 TA03 CB 0 1 F CDRVCC 0 1 F CVCC 1 F RUV2 61 9k RUV1 470k RON 110k DB BAS19 M1 Si7850DP M2 Si7850DP C5 22 F D1 B1100 COUT 47 F 6 3V 3...

Страница 35: ...100pF CSS 1000pF VIN 15V TO 60V VOUT 3 3V 5A M3 ZVN4210G CC2 47pF RC 200k RFB2 3 24k RFB1 10 2k LTC3810 5 EXTVCC TG SENSE BG BGRTN DRVCC INTVCC NDRV BOOST 38105 TA04 CB 0 1 F CDRVCC 0 1 F CVCC 1 F RO...

Страница 36: ...NT SHALL NOT EXCEED 0 20mm ON ANY SIDE 5 EXPOSED PAD SHALL BE SOLDER PLATED 6 SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE PIN 1 TOP MARK NOTE 6 0 40 0 10 31 1 2...

Страница 37: ...circuits as described herein will not infringe on existing patent rights Revision History REV DATE DESCRIPTION PAGE NUMBER D 12 10 Change to Operating Temperature Range Updated Order Information tabl...

Страница 38: ...Down DC DC Controller PLL Fixed Frequency 100kHz to 600kHz 4V VIN 100V 0 8V VOUT 0 93VIN SSOP 16 SSOP 28 LT3845A 60V Low IQ Single Output Synchronous Step Down DC DC Controller Adjustable Fixed Frequ...

Отзывы: