background image

LTC3810-5

15

38105fd

The basic LTC3810-5 application circuit is shown on the 

first page of this data sheet. External component selection 

is primarily determined by the maximum input voltage and 

load current and begins with the selection of the sense 

resistance and power MOSFET switches. The LTC3810-5 

uses either a sense resistor or the on-resistance of the 

synchronous power MOSFET for determining the inductor 

current. The desired amount of ripple current and operating 

frequency largely determines the inductor value. Next, C

IN

 is 

selected for its ability to handle the large RMS current into 

the converter and C

OUT

 is chosen with low enough ESR to 

meet the output voltage ripple and transient specification. 

Finally, loop compensation components are selected to 

meet the required transient/phase margin specifications.

Maximum Sense Voltage and V

RNG

 Pin

Inductor current is determined by measuring the volt-

age across a sense resistance that appears between the 

SENSE

 and SENSE

+

 pins. The maximum sense voltage 

is set by the voltage applied to the V

RNG

 pin and is equal 

to approximately: 
 V

SENSE(MAX)

 = 0.173V

RNG

 – 0.026

The current mode control loop will not allow the inductor 

current valleys to exceed V

SENSE(MAX)

/R

SENSE

. In prac-

tice, one should allow some margin for variations in the 

LTC3810-5 and external component values and a good 

guide for selecting the sense resistance is:

 

 

R

SENSE

=

V

SENSE(MAX)

1.3 •I

OUT(MAX)

An external resistive divider from INTV

CC

 can be used 

to set the voltage of the V

RNG

 pin between 0.5V and 2V 

resulting in nominal sense voltages of 60mV to 320mV. 

Additionally, the V

RNG

 pin can be tied to SGND or INTV

CC

 

in which case the nominal sense voltage defaults to 95mV 

or 215mV, respectively.

Connecting the SENSE

+

 and SENSE

 Pins

The LTC3810-5 can be used with or without a sense re-

sistor. When using a sense resistor, place it between the 

source of the bottom MOSFET, M2 and PGND. Connect 

the SENSE

+

 and SENSE

 pins to the top and bottom of 

the sense resistor. Using a sense resistor provides a well 

defined current limit, but adds cost and reduces efficiency. 

Alternatively, one can eliminate the sense resistor and use 

the bottom MOSFET as the current sense element by simply 

connecting the SENSE

+

 pin to the lower MOSFET drain 

and SENSE

 pin to the MOSFET source. This improves 

efficiency, but one must carefully choose the MOSFET 

on-resistance, as discussed below.

Power MOSFET Selection
The LTC3810-5 requires two external N-channel power 

MOSFETs, one for the top (main) switch and one for the 

bottom (synchronous) switch. Important parameters for 

the power MOSFETs are the breakdown voltage BV

DSS

threshold voltage V

(GS)TH

, on-resistance R

DS(ON)

, input 

capacitance and maximum current I

DS(MAX)

When the bottom MOSFET is used as the current sense 

element, particular attention must be paid to its on-

resistance. MOSFET on-resistance is typically specified 

with a maximum value R

DS(ON)(MAX)

 at 25°C. In this case, 

additional margin is required to accommodate the rise in 

MOSFET on-resistance with temperature:

 

 

R

DS(ON)(MAX)

=

R

SENSE

ρ

T

The 

ρ

T

 term is a normalization factor (unity at 25°C)  

accounting for the significant variation in on-resistance 

with  temperature (see Figure 5) and typically varies  

from 0.4%/°C to 1.0%/°C depending on the particular 

MOSFET used.

Figure 5. R

DS(ON)

 vs Temperature

JUNCTION TEMPERATURE (

°

C)

–50

ρ

T

 NORMALIZED ON-RESISTANCE

1.0

1.5

150

38105 F05

0.5

0

0

50

100

2.0

applicaTions inForMaTion

Содержание LTC3810-5

Страница 1: ...ase Station Power Supplies n Networking Equipment Servers n Automotive and Industrial Control Systems n High Voltage Operation Up to 60V n Large 1 Gate Drivers n No Current Sense Resistor Required n D...

Страница 2: ...ODE SYNC ITH VFB PLL LPF SENSE NC NC NC SENSE BGRTN BG DRVCC NC I ON NC NC NC BOOST TG SW SS TRACK NC NC SHDN UVIN NDRV EXTV CC INTV CC TJMAX 125 C JA 34 C W EXPOSED PAD PIN 33 IS SGND MUST BE SOLDERE...

Страница 3: ...2 V ISHDN SHDN Pin Input Current 0 1 A VUVIN UVIN Undervoltage Lockout UVIN Rising UVIN Falling Hysteresis l l 0 86 0 78 0 07 0 89 0 80 0 10 0 92 0 82 0 12 V V V VVCCUV INTVCC Undervoltage Lockout Lin...

Страница 4: ...EXTVCC 6V VEXTVCC 15V 5 2 5 5 5 8 V DVEXTVCC 1 VEXTVCC VINTVCC at Dropout ICC 20mA VEXTVCC 5V 75 150 mV DVLOADREG 1 INTVCC Load Regulation from EXTVCC ICC 0mA to 20mA VEXTVCC 10V 0 01 VINTVCC 2 INTVCC...

Страница 5: ...RT 0 1 FRONT PAGE CIRCUIT 200 s DIV VOUT 5V DIV VFB 0 5V DIV IL 5A DIV 38105 G04 VIN 48V FRONT PAGE CIRCUIT 500 s DIV 38105 G05 VOUT 5V DIV SS TRACK 0 5V DIV VFB 0 5V DIV IL 5A DIV VIN 48V ILOAD 1A MO...

Страница 6: ...300 400 3 0 VRNG 2V 1 4V 1V 0 7V 0 5V ION CURRENT A 10 10 ON TIME ns 100 1000 10000 100 1000 10000 38105 G12 VON INTVCC VON VOLTAGE V 0 400 500 700 1 5 2 5 38105 G13 300 200 0 5 1 2 3 100 0 600 ON TI...

Страница 7: ...VINTVCC 5V 50 25 75 25 0 50 100 150 125 TEMPERATURE C R DS ON 1 25 1 50 1 75 38105 G20 1 00 0 75 0 50 0 25 VBOOST VINTVCC 5V DRVCC BOOST VOLTAGE V 4 5 7 9 11 13 PEAK SOURCE CURRENT A 3 0 2 5 2 0 1 5 1...

Страница 8: ...stics INTVCC VOLTAGE V 0 200 250 300 6 10 38105 G27 150 100 2 4 8 12 14 50 0 INTV CC CURRENT A 50 25 75 25 0 50 100 150 125 TEMPERATURE C SS TRACK CURRENT A 2 3 38105 G28 1 0 LOAD CURRENT A 0 2 0 3 0...

Страница 9: ...tage ranges from 0V to 2 6V with 1 2V corresponding to zero sense voltage zero current VFB Pin7 FeedbackInput ConnectVFBthrougharesistor divider network to VOUT to set the output voltage PLL LPF Pin 8...

Страница 10: ...resistor or MOSFET SW Pin 25 Switch Node Connection to Inductor and Bootstrap Capacitor The voltage swing at this pin is 0 7V a Schottky diode external voltage drop to VIN TG Pin 26 Top Gate Drive Th...

Страница 11: ...24 SW 25 TG BOOST CB 26 27 EXTVCC 15 INTVCC NDRV 16 14 UV 0 72V OV 0 88V CVCC VOUT M2 M1 M3 L1 COUT CIN SS TRACK DB 4 VIN VIN SENSE 20 OVERTEMP SENSE FOLDBACK 0 8V REF 5V REG INTVCC ITH 5 8 ION 31 VI...

Страница 12: ...behaves as a constant frequency part against the load and supply variations Pulling the SHDN pin low forces the controller into its shutdown state turning off both M1 and M2 Forcing a voltage above 1...

Страница 13: ...w side driver drives the bottom side MOSFET see Figure 3 The bottom side driver is supplied directly from the DRVCC pin The top MOSFET drivers are biased from floating bootstrap capacitor CB which nor...

Страница 14: ...OSFETissizedforproperdissipationand thedrivershutdown restartforVOUT 4 7Visdisabled This scheme is less efficient but may be necessary if VOUT 4 7V and a boost network is not desired 3 Tricklechargemo...

Страница 15: ...e tied to SGND or INTVCC in which case the nominal sense voltage defaults to 95mV or 215mV respectively Connecting the SENSE and SENSE Pins The LTC3810 5 can be used with or without a sense re sistor...

Страница 16: ...LLER is the calculated capacitance using the gate charge curve from the MOSFET data sheet and the technique described above BothMOSFETshaveI2RlosseswhilethetopsideN channel equation incudes an additio...

Страница 17: ...ration as the input supply varies f VOUT VVON RON 76pF HZ Toholdfrequencyconstantduringoutputvoltagechanges tie the VON pin to VOUT or to a resistive divider from VOUT when VOUT 2 4V The VON pin has i...

Страница 18: ...t occurs at the highest VIN To guarantee that ripple current does not exceed a specified maximum the inductance should be chosen according to L VOUT f IL MAX 1 VOUT VIN MAX Once the value for L is kno...

Страница 19: ...higher ESR and lower RMS current ratings A good approach is to use a combination of aluminum electrolyticsforbulkcapacitanceandceramicsforlowESR and RMS current If the RMS current cannot be handled by...

Страница 20: ...connected to the BOOST pin supplies the gate drive voltage for the topside MOSFET This capacitor is charged through diode DB from DRVCCwhentheswitchnodeislow WhenthetopMOSFET turns on the switch node...

Страница 21: ...tart cycles are then attempted at low duty cycle intervals to try to bring the output back up see Figure 10 This fault timeout operation is enabled by choosing the choosing RNDRV such that the resisto...

Страница 22: ...t up Once the INTVCC DRVCC voltage reaches the trickle charge UV threshold of 9V the drivers will turn on andstartdischargingCINTVCC CDRVCC ataratedetermined by the driver current IG In order to ensur...

Страница 23: ...he modulator the output filter and load and the feedback amplifier with its compensation network All of these components affect loop behavior and must be ac counted for in the loop compensation The mo...

Страница 24: ...in one of three ways measured directly from a breadboard or if the appropriate parasitic values are known simulated or generated from the modulator transfer function Mea surement will give more accur...

Страница 25: ...ossoverfrequencyabout25 of the switching frequency for maximum bandwidth Al though it may be tempting to go beyond fSW 4 remember that significant phase shift occurs at half the switching frequency th...

Страница 26: ...frequency operation To prevent forcing current back into the main power supply potentially boosting the input supply to a dangerous voltage level forced continuous modeofoperationisdisabledwhentheTRAC...

Страница 27: ...asheetstypicallyspecifynominalandmaximumvalues forRDS ON butnotaminimum Areasonableassumption is that the minimum RDS ON lies the same percentage below the typical value as the maximum lies above it C...

Страница 28: ...eedback divider shown in Figure 16 In this tracking mode VOUT1 mustbesethigherthanVOUT2 Toimplement the ratiometric tracking the ratio of the divider should be exactly the same as the master IC s feed...

Страница 29: ...the shifted common mode voltage The top two current sources are of the same amplitude In the coincident mode the TRACK SS voltage is substantially higher than 0 8V at steady state and effectively turn...

Страница 30: ...example if RDS ON 0 01 andRL 0 005 thelosswillrangefrom15mW to 1 5W as the output current varies from 1A to 10A 2 Transition loss This loss arises from the brief amount of time the top MOSFET spends i...

Страница 31: ...teepropercurrentlimitatworst caseconditions increasenominalVSNS byatleast50 to320mV bytying VRNG to 2V To check if the current limit is acceptable at VSNS 320mV assume a junction temperature of about...

Страница 32: ...e layer should not have any traces and it should be as close as possible to the layer with power MOSFETs Place CIN COUT MOSFETs D1 and inductor all in one compact area It may help to have some compone...

Страница 33: ...to ensure proper opera tion of the controller Segregate the signal and power grounds All small signal components should return to the SGND pin at one point which is then tied to the PGND pin close to...

Страница 34: ...k LTC3810 5 EXTVCC TG SENSE BG BGRTN DRVCC INTVCC NDRV BOOST 38105 TA03 CB 0 1 F CDRVCC 0 1 F CVCC 1 F RUV2 61 9k RUV1 470k RON 110k DB BAS19 M1 Si7850DP M2 Si7850DP C5 22 F D1 B1100 COUT 47 F 6 3V 3...

Страница 35: ...100pF CSS 1000pF VIN 15V TO 60V VOUT 3 3V 5A M3 ZVN4210G CC2 47pF RC 200k RFB2 3 24k RFB1 10 2k LTC3810 5 EXTVCC TG SENSE BG BGRTN DRVCC INTVCC NDRV BOOST 38105 TA04 CB 0 1 F CDRVCC 0 1 F CVCC 1 F RO...

Страница 36: ...NT SHALL NOT EXCEED 0 20mm ON ANY SIDE 5 EXPOSED PAD SHALL BE SOLDER PLATED 6 SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE PIN 1 TOP MARK NOTE 6 0 40 0 10 31 1 2...

Страница 37: ...circuits as described herein will not infringe on existing patent rights Revision History REV DATE DESCRIPTION PAGE NUMBER D 12 10 Change to Operating Temperature Range Updated Order Information tabl...

Страница 38: ...Down DC DC Controller PLL Fixed Frequency 100kHz to 600kHz 4V VIN 100V 0 8V VOUT 0 93VIN SSOP 16 SSOP 28 LT3845A 60V Low IQ Single Output Synchronous Step Down DC DC Controller Adjustable Fixed Frequ...

Отзывы: