background image

ELECTRIC VEHICLE MANAGEMENT SYSTEM V3

ZERO EMISSION VEHICLES AUSTRALIA

Current Sensor

The EVMS3 communicates with a current sensor on the CAN bus to receive instantaneous 
current, and uses this to calculate battery State of Charge through integration over time. Two 
types of current sensor are available, Hall Effect or Shunt.

Hall Effect current sensors are available for 300A, 600A or 1200A maximum, and 

• 

are installed simply by slipping the battery cable through the blue torus of the hall 
sensor. Smaller rated sensors offer proportionally higher measurement accuracy so 
are more appropriate for lower current systems. Hall sensors are normally easier to 
install and generate no heat, but are a little more expensive and have slightly less 
accurate zero point.
The Shunt Interface measures current flow through a shunt installed on the battery 

• 

cable and outputs it to the CAN bus. The Shunt Interface can work with 50A, 100A, 
200A or 500A shunts, either 75mV or 50mV. Smaller shunts offer proportionately 
higher measurement resolution. Note that the current ratings for the shunts are 
maximum continuous ratings, but the shunt interface can measure up to twice the 
shunt’s nominal rating intermittently - limited by heat buildup in the shunt.
 A shunt 
interface plus shunt works out a little cheaper than the Hall Effect sensor and has a 
slightly more accurate zero point (better accuracy with very low currents), but can 
be a little more effort to install, and generates some heat.

As a general guide, hall effect sensors are more suitable for high power systems, and shunts 
are more suitable for lower power systems.

In both cases the current sensor or shunt may be installed on either the positive or negative 
battery wire. The Hall Sensor should be oriented such that discharge current flows from the 
back (black) side to the front (blue) side. Ensure that there are no devices installed between 
the battery and the current sensor or shunt, or the EVMS will not be able to calculate state of 
charge correctly, since the current flow to/from those devices would not be measured by the 
current sensor. Note: If the status light is blinking when no current is flowing, hold down the 
button until it stops blinking to recalibrate the sensor’s zero point.

Charger Integration Options

To enable charging, the EVMS needs to switch into charging mode by connecting the Charge 
Sense input to ground / chassis. This will wake it from sleep if needed, power up the CAN 
bus to communicate with BMS modules, and start the charger. It will also prevent the vehicle 
from  being  accidentally  driven  off  while  plugged  in  to  charge. There  are  several  ways  to 
implement charge detection:

A magnetic reed switch (or similar) can be wired between Charge Sense and 

• 

ground/chassis, and set up to close its contacts when the door/cover to the charging 
port is opened.

An AC relay with its coil wired in parallel with the charger’s AC input, so that when-

• 

ever the charger has power, the relay will also close to enable EVMS charge mode.
Some chargers (e.g newer TC Chargers) have an output 12V supply which can be 

• 

used to switch a small signal relay to join Charge Sense to ground / chassis.

It is also essential that the EVMS is able to switch off the charger if any cells exceed safe 
voltage, to prevent damage from over-charging. There are several ways to implement this:

If using CAN integration with a TC Charger, the EVMS is able to disable the charger 

• 

over CAN bus so no additional control relays are required, and the Charge Enable 
output can be left unused. To connect a TC Charger to a ZEVA CAN bus, join only 
the CANGND, CANL and CANH pins
. (The charger also has a 12V pin but this 
should not be joined to the ZEVA CAN bus, since it is a 12V output, and only the 
EVMS should manage 12V power to the CAN bus.)
Many chargers have a pair of control pins that get joined to enable the charger. To 

• 

use this mechanism, use a small 12V relay switched by the Charge Enable output of 
the EVMS, with the normally open contacts wired to the enable pins.
The Auxiliary Contactor output is disabled as well as the Charge Enable output if 

• 

any cells go over-voltage, so if your traction circuit has any auxiliary contactors 
(and your charger is tolerant of having its DC side interrupted mid-charging), there 
is no need to add further relays/contactors to stop the charger, as the opening of the 
auxiliary contactor will necessarily interrupt charge current.
The final option, which can be safely used with any charger, is to use a power relay 

• 

switched by the Charge Enable terminal from the EVMS, with the relay’s Normally 
Open outputs wired to interrupt the AC input to the charger (as shown on the ex-
ample wiring diagram on the previous page).

Auxiliary Contactors

Auxiliary contactors (as shown on the example circuit diagram) are optional but can serve 
several functions in an EV.

Split up high voltage battery packs into smaller groups of non-lethal voltage, or to 

• 

isolate separate groups of cells distributed around the vehicle, for safety.
Switch on/off other HV loads that are before the main contactor, either directly (us-

• 

ing a relay switching power to the device itself) or indirectly (by breaking the main 
traction circuit). The most common example is the DC/DC converter, so that it is not 
permanently in-circuit.
Effectively functioning as an automatic maintenance switch. (If you don’t have an 

• 

auxiliary contactor breaking the traction circuit when the key is off, it is advisable 
to have a manual maintenance switch to do the same job whenever working on the 
vehicle.)

8

7

Summary of Contents for Electric Vehicle Management System V3

Page 1: ...rors warnings A complete installation consists of an EVMS usually installed in the vehicle s engine bay communicating over CAN bus with a Monitor module in the vehicle cabin and a current sensor and battery management modules located within your battery boxes The CAN bus may also include up to three TC Chargers and a ZEVA motor controller This manual describes the installation and operation of bot...

Page 2: ... that most automotive insulated wire is not rated for the higher voltage of EV traction circuits The supplied fork crimp lugs are recommended for the most reliable connections to the screw terminals The following diagram shows a typical schematic for a complete EVMS installation in an electric vehicle other than gauge outputs and Multi Purpose terminals It may look a little intimidating at first b...

Page 3: ...he EVMS will not be able to communicate with CAN enabled devices from other manufacturers other than TC Chargers Normally it is best for ZEVA devices to use their own dedicated CAN bus rather than share an existing CAN bus with other devices to avoid the possibility of bandwidth limitations and ID conflicts The EVMS itself has two CAN bus connectors joined to the same bus internally which can be c...

Page 4: ...magnetic reed switch or similar can be wired between Charge Sense and ground chassis and set up to close its contacts when the door cover to the charging port is opened An AC relay with its coil wired in parallel with the charger s AC input so that when ever the charger has power the relay will also close to enable EVMS charge mode Some chargers e g newer TC Chargers have an output 12V supply whic...

Page 5: ...is a graph of all cell voltages Green bars indicate cells within range Bars will change to blue for undervoltage cells orange for cells being balanced and red for overvoltage cells BMS Details Module 1 Cell voltages 3 323 3 336 3 321 3 317 3 332 3 316 3 327 3 323 3 318 3 322 3 331 3 327 Temp1 23 C Temp2 25 C Prev Next Detailed information for a single BMS module showing voltage of each cell to 3 d...

Page 6: ...whelming at first but most of them can be left at their default value unless you need to adjust a specific function to suit your installation If you wish to lock the settings after the system has been commissioned simply remove the small jumper on the left hand side of the Monitor s CAN port The right hand jumper is for disconnecting the Monitor s internal CAN termination resistor in cases where t...

Page 7: ...ere will be 10 seconds of warning before an automatic shutdown Shutdown can be suppressed by acknowledging the warning within 10 seconds BMS Max Temp 40 100 C or OFF 101 Low Temp Chg Rest Yes No Low Temperature Charge Restriction setting can disable charging if the battery temperature is below the programmed Low Temp Warning threshold rather than just provide a warning Max Charge Voltage 0 500V On...

Page 8: ... Useful if you sometimes use two different sized chargers or if you sometimes need to restrict a large charger from overloading a small AC socket Hdlight In Headlight Input Connect MPI terminal to the headlight signal in your car 12V when headlights are on to have the EVMS automatically dim the Monitor brightness at night based on the Night Brightness setting Ctr Aux Sw Contactor Auxiliary Switch ...

Page 9: ...harge has reached the programmed warning threshold Over Temperature The EVMS s temperature sensor has reported a temperature above the programmed warning level Isolation Fault A chassis leakage above the programmed threshold has been detected May indicate an insulation fault with traction circuit wiring or even water ingress into the motor or other device Low 12V Battery The voltage of the 12V aux...

Page 10: ...s of 0 20V giving a 2 6V 3 0V band for the Main Ctr output and 3 4V 3 8V band for the Charge Enable output LiCo cells have a more linear charge curve so typically need a smaller hysteresis band around 0 05V 0 10V with a Min Voltage setting about 3 00V and a Max Voltage setting about 4 1V In Stationary Mode the Charge Sense input is no longer used and precharging is not supported The Aux Ctr output...

Reviews: