background image

-3-

Released 2018-01-16 

Drawing No. LP0749

3.0 W

IrIng

 

the

 M

eter

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on 

the back of the meter. All conductors should conform to the meter’s 

voltage and current ratings. All cabling should conform to appropriate 

standards of good installation, local codes and regulations. It is 

recommended that the power supplied to the meter (DC or AC) be 

protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back 

of the meter case against those shown in wiring drawings for proper wire 

position. Strip the wire, leaving approximately 0.3" (7.5 mm) bare lead 

exposed (stranded wires should be tinned with solder.) Insert the lead 

under the correct screw-clamp terminal and tighten until the wire is 

secure. (Pull wire to verify tightness.)

EMC INSTALLATION GUIDELINES

Although Red Lion Controls Products are designed with a high degree 

of immunity to Electromagnetic Interference (EMI), proper installation 

and wiring methods must be followed to ensure compatibility in each 

application. The type of the electrical noise, source or coupling method 

into a unit may be different for various installations. Cable length, routing, 

and shield termination are very important and can mean the difference 

between a successful or troublesome installation. Listed are some EMI 

guidelines for a successful installation in an industrial environment.

1. A unit should be mounted in a metal enclosure, which is properly 

connected to protective earth.

2. Use shielded cables for all Signal and Control inputs. The shield 

connection should be made as short as possible. The connection point 

for the shield depends somewhat upon the application. Listed below 

are the recommended methods of connecting the shield, in order of 

their effectiveness.

a. Connect the shield to earth ground (protective earth) at one end 

where the unit is mounted.

b. Connect the shield to earth ground at both ends of the cable, usually 

when the noise source frequency is over 1 MHz.

3. Never run Signal or Control cables in the same conduit or raceway 

with AC power lines, conductors, feeding motors, solenoids, SCR 

controls, and heaters, etc. The cables should be run through metal 

conduit that is properly grounded. This is especially useful in 

applications where cable runs are long and portable two-way radios 

are used in close proximity or if the installation is near a commercial 

radio transmitter. Also, Signal or Control cables within an enclosure 

should be routed as far away as possible from contactors, control 

relays, transformers, and other noisy components. 

4. Long cable runs are more susceptible to EMI pickup than short cable runs.

5. In extremely high EMI environments, the use of external EMI 

suppression devices such as Ferrite Suppression Cores for signal and 

control cables is effective. The following EMI suppression devices (or 

equivalent) are recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000)

Line Filters for input power cables:

Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)

6. To protect relay contacts that control inductive loads and to minimize 

radiated and conducted noise (EMI), some type of contact protection 

network is normally installed across the load, the contacts or both. The 

most effective location is across the load.

a. Using a snubber, which is a resistor-capacitor (RC) network or metal 

oxide varistor (MOV) across an AC inductive load is very effective at 

reducing EMI and increasing relay contact life.

b. If a DC inductive load (such as a DC relay coil) is controlled by a 

transistor switch, care must be taken not to exceed the breakdown 

voltage of the transistor when the load is switched. One of the most 

effective ways is to place a diode across the inductive load. Most 

RLC products with solid state outputs have internal zener diode 

protection. However external diode protection at the load is always 

a good design practice to limit EMI. Although the use of a snubber 

or varistor could be used.

RLC part numbers: Snubber: SNUB0000

   

Varistor: ILS11500 or ILS23000

7. Care should be taken when connecting input and output devices to the 

instrument. When a separate input and output common is provided, 

they should not be mixed. Therefore a sensor common should NOT be 

connected to an output common. This would cause EMI on the 

sensitive input common, which could affect the instrument’s operation.

Visit RLC’s web site at http://www.redlion.net/emi for more information 

on EMI guidelines, Safety and CE issues as they relate to Red Lion 

Controls products.

2.0 s

ettIng

 

the

 DIP s

WItches

To access the switches, remove the meter base from the case by firmly 

squeezing and pulling back on the side rear finger tabs. This should 

lower the latch below the case slot (which is located just in front of the 

finger tabs). It is recommended to release the latch on one side, then 

start on the other side latch.

Warning

: Exposed line voltage exists on the circuit boards. 

Remove all power to the meter and load circuits before 

accessing inside of the meter.

SWITCH 1 (Input A)

LOGIC

: Input A trigger levels V

IL

 = 1.25 V max.; V

IH

 = 2.75 V min.; 

V

MAX

 = 28 VDC

MAG

: 200 mV peak input sensitivity; 100 mV hysteresis; maximum 

voltage: 40 V peak (28 Vrms); Must also have Input A SRC switch 

ON. (Not recommended with counting applications.)

SWITCH 2 (Input A) 

{See Note 1}

SNK

.: Adds internal 7.8 K

 pull-up resistor to +5 VDC, I

MAX

 = 0.7 mA.

SRC

.: Adds internal 3.9 K

 pull-down resistor, 7.2 mA max. @ 28 VDC max.

SWITCH 3 (Input A)

HI Frequency

: Removes damping capacitor and allows max. frequency.

LO Frequency

: Adds a damping capacitor for switch contact bounce. 

Limits input frequency to 50 Hz and input pulse widths to 10 msec.

SWITCH 4 (Input B) 

{See Note 1}

SNK

.: Adds internal 7.8 K

 pull-up resistor to +5 VDC, I

MAX

 = 0.7 mA.

SRC

.: Adds internal 3.9 K

 pull-down resistor, 7.2 mA max. @ 28 VDC max.

SWITCH 5 (Input B)

HI Frequency

: Removes damping capacitor and allows max. frequency.

LO Frequency

: Adds a damping capacitor for switch contact bounce. 

Limits input frequency to 50 Hz and input pulse widths to 10 msec.

Note 1: When the DIP switch is in the SNK position (OFF), the signal 

input is configured as active low. When the switch is in the SRC 

position (ON), the signal input is configured as active high.

3
4
5

ON

SNK.

HI FREQ.

HI FREQ.

SRC.

LO FREQ.

LO FREQ.

Factory Setting

2

1

SNK.

LOGIC

SRC.

MAG.

Input A

Input B

Main

Circuit

Board

 

REAR TERMINALS

5

4

3

2

1

FRONT DISPLAY

INPUT SET-UP

DIP SWITCHES

Summary of Contents for PAX Lite PAXLCR

Page 1: ...MARY All safety regulations local codes and instructions that appear in this and corresponding literature or on equipment must be observed to ensure personal safety and to prevent damage to either the...

Page 2: ...Both inputs allow selectable active low or active high logic and selectable input filtering for low frequency signals or switch contact debounce Input A Logic level or magnetic pickup signals Trigger...

Page 3: ...uctive loads and to minimize radiated and conducted noise EMI some type of contact protection network is normally installed across the load the contacts or both The most effective location is across t...

Page 4: ...C DC AC DC 2 1 ON 3 4 MAGNETIC PICKUP INPUT B COMMON INPUT A COMMON 4 5 6 7 5 24V EXC 3 to 2 5 mA MAX Resistor to Limit Current ON 1 2 3 4 AC 5 INPUT A INPUT B COMMON 7 6 5 24V EXC COMMON 3 4 1 2 ON 3...

Page 5: ...his also advances the meter to the next parameter For numeric values the value is displayed with one digit flashing initially the right most digit Pressing the RST button increments the digit by one o...

Page 6: ...ut actions are shown in the boxes below For simple counting applications it is recommended to use Count with Direction for the count mode Simply leave the direction input unconnected Shaded area selec...

Page 7: ...edths Scale Factor Desired Display Units x Decimal Point Position Number of Pulses Given that 128 pulses are equal to 1 foot display total feet with a one hundredth resolution Scale Factor 1 00 x 100...

Page 8: ...ponding Scaling Input value These values are internally plotted to a Display value of 0 and Input value of 0 0 Hz A linear relationship is formed between these points to yield a rate display value tha...

Page 9: ...tensity Programming any Security Code other than 0 requires this code to be entered at the prompt in order to access Full Programming mode Quick Programming mode if enabled is accessed before the prom...

Page 10: ...e model and version x x of the meter The display then returns to Press the PAR button to exit the module VIEW MODEL AND VERSION DISPLAY Select the display to which the Setpoint is assigned SETPOINT AS...

Page 11: ...off at O1 The setting only applies if Setpoint 1 Output Action is programmed for timed output SETPOINT 2 OUTPUT OFF AT SETPOINT 1 SP2 Only High Acting Boundary Type activates the output when the assi...

Page 12: ...int Assignment Setpoint Enable Setpoint Output Action Setpoint Annunciator SP1 Only Setpoint Value Setpoint Output Time out Setpoint Output Logic Exit Programming Counter Auto Reset Setpoint Boundary...

Page 13: ...POE CUB4LP40 SLX 8ES 1 TORF1000 WF1000BF FANWAND721SMA FCOPPER SFP 100 PSDR060W SLX 5ES 1 309FXE ST 15 CRM000CMCMOD0000 CRM000CMDN000000 CR10001000000210 CR30001000000420 PAXDP000 NT24K 16M12 POE PT N...

Reviews: