background image

1.0 Introduction

The  board  inputs  are  provided  at  BNC1  and  BNC2.

Jumper  headers  JP1  and  JP3  allow  these  inputs  to  be

either a.c. or d.c. coupled to the DUT. Provision is made

to adjust the DUT supply voltage (measured at TP1) with

potentiometer VR1.

These  ADC  Design  Kits  (consisting  of  one  of  these

evaluation 

boards: 

ADC12xS101, 

ADC10xS101,

ADC08xS101, 

ADC12xS051, 

ADC10xS051,

ADC08xS051, 

ADC12xS021, 

ADC10xS021,

ADC08xS021  and  WaveVision4  hardware,  where  "x"  in

the device types here could be a 2 or a 4, indicating the

number  of  multiplexer  inputs)  is  designed  to  ease

evaluation 

and 

design-in 

of 

these 

National

Semiconductor  Analog-to-Digital  Converters.  These

evaluation boards allow the desivgner to evaluate product

performance in a choice of two ways: in standalone mode

with a logic analyzer and appropriate software (including

National's  WaveVision  software),  or  with  a  personal

computer and 

WaveVision4

 hardware and software.

VR2 is used to set the input offset.

2.0 Board Assembly

These  Evaluation  Boards  come  fully  assembled  and

ready  to  use.  Refer  to  the  Bill  of  Materials  for  a

description  of  components,  to 

Figure  1

  for  major

component placement and to 

Figure 2

 for the Evaluation

Board schematic.

3.0 Quick Start

Refer  to 

Figure  1

  for  locations  of  test  points  and  major

components.

Reference in  this  Guide  to  DUT  is  meant  to  refer  to  the

particular device for which you have the evaluation board.

1.

Connect the evaluation board to the Capture Board

(order  number  WAVEVSN  BRD  4.0).  See  the

Capture Board Manual for operation of that board.

For  operation  with  a  computer  system,  this  evaluation

board should be coupled to a WaveVision4 data capture

board (National part number WAVEVSN BRD 4.0) using

the  WaveVision  software  operating  under  Microsoft

Windows.  The  analog  signal  presented  to  the  DUT  is

captured  by  the  WaveVision4  data  capture  board,  and

displayed  on  the  computer  screen  as  a  dynamic

waveform,  FFT,  and/or  histogram.  The  software  also

computes and displays dynamic performance in the form

of SNR, SINAD, THD, SFDR, and ENOB.

2.

Connect  a  clean  power  supply  to  the  terminals  of

connector  P1.  Adjust  power  supply  to  a  voltage  of

±5.5V to ±5.7V before connecting it to the board.

3.

Connect a voltmeter to TP1 and use VR1 to set the

DUT  analog  supply  voltage  for  the  desired  value

b2.7V and +5.0V.

4.

Set the jumper to short pins 1 and 2 of JP6 and be

sure  there  is  a  clock  oscillator  of  the  appropriate

frequency at Y1.

Important Note: 

The evaluation boards for all of these ADCs

look  identical.  The  actual  device  placed  on  your  evaluation

board can be identified by the label on the board and verified

by  looking  at  the  DUT  (Device  Under  Test)  top  mark.  The

devices have the following top marks:

5.

Put a jumper between pins 1 and 2 of JP1 and pins

1 and 2 of JP2.

6.

Connect a signal, through an appropriate bandpass

filter,  to  BNC1.  The  peak-to-peak  amplitude  of  this

signal  at  TP6  should  be  the  same  as  or  just  under

the power supply voltage setting.

Device

Top Mark

ADC082S101

X22C

ADC082S051

X04C

ADC082S021

X16C

7.

Connect  a  USB  cable  between  the  WaveVision

Capture Board and the PC.

ADC084S101

X25C

ADC084S051

X10C

8.

Run  the  WaveVision  4  software  and  click  on

Settings, then click on Capture. Under "Board Type"

select "WaveVision 4.0 (USB)".

ADC084S021

X19C

ADC102S101

X23C

ADC102S051

X05C

9.

Under  "Communication"  press  the  "Test"  button.  If

you get a "Communication Failed"  message,  check

all connections and be sure the power supply is on.

ADC102S021

X17C

ADC104S101

X26C

10. If the appropriate sample rate (not clock rate) is not

reported,  check  to  be  sure  the  clock  signal  has

adequate amplitude and repeat the previous step.

ADC104S051

X11C

ADC104S021

X20C

ADC122S101

X24C

11. Click  "Accept"  then  gather  data  by  pressing  F1  on

the  keyboard.  Perform  an  FFT  on  the  data  by

clicking on the FFT tab.

ADC122S051

X06C

ADC122S021

X18C

ADC124S101

X27C

ADC124S051

X12C

See the WaveVision Capture Board Manual for complete

data gathering instructions.

ADC124S021

X21C

The  signal  at  the  Analog  Input  to  the  board  is  digitized

and is available at FutureBus connector J2.

              

3

          

http://www.national.com

Summary of Contents for ADC122S101

Page 1: ...to Digital Converters with Input Multiplexer ADC122S101 ADC102S101 ADC082S101 ADC122S051 ADC102S051 ADC082S051 ADC122S021 ADC102S021 ADC082S021 ADC124S101 ADC104S101 ADC084S101 ADC124S051 ADC104S051...

Page 2: ...talling and Using the ADCxx1S101 Evaluation Board 5 5 1 Software Installation 5 5 2 Setting up the ADCxx1S101 Evaluation Board 5 5 2 1 Board Set up 5 5 2 2 Quick Check of Analog Functions 5 5 2 3 Quic...

Page 3: ...e also computes and displays dynamic performance in the form of SNR SINAD THD SFDR and ENOB 2 Connect a clean power supply to the terminals of connector P1 Adjust power supply to a voltage of 5 5V to...

Page 4: ...both through an appropriate filter s These 50 Ohm inputs are intended to accept a low noise sine wave signal of peak to peak amplitude up to the power supply level To accurately evaluate the ADC dynam...

Page 5: ...nect The evaluation board to a WaveVision4 Capture Board WAVEVSN BRD 4 0 Pin 1 of P1 5 5V to 5 7V at 50 mA Pin 2 of P1 Ground 2 Connect the desired jumper to JP1 JP2 JP3 and JP4 See Section 4 8 4 8 An...

Page 6: ...d not be used for coherent sampling 9 With the mouse you may click on the magnifying glass then and drag top left to bottom right to select a portion of the displayed waveform for better examination 5...

Page 7: ...of TP1 Be sure that only one clock source oscillator at Y1 or signal at BNC3 is active on the board 6 0 Evaluation Board Specifications Board Size 3 1 x 3 8 8 0 cm x 9 6 cm Power Requirements 5 5V to...

Page 8: ...COUP EEPROM_Power AIN3 JP6 HEADER 3X1 1 2 3 ADC_SCLK ADC_SCLK C19 10uF 6 3V JP1 IN1_SEL 1 3 5 2 4 6 JP2 IN2_CH_SEL 1 2 3 4 5 6 7 8 TPG4 GND 1 C12 10uF 6 3V AIN1 R3 51 1 C18 0 1 uF L2 100 uH Choke ADC_...

Page 9: ...Block DigiKey ED1609 ND 15 2 Q1 Q2 MMBTN3904 SOT 23 Various 16 2 R2 R3 51 1 1 1 8 Watt Size 0603 17 1 R4 0 Size 0603 18 1 R5 1 8k 5 1 10 W Size 0603 19 2 R6 R7 1k 5 1 10 W Size 0603 20 2 VR1 VR2 1k Di...

Page 10: ...und 8 Ground 10 Ground JP1 Input 1 Select Jumper Function none Input 1 not connected to DUT 1 2 Input 1 a c coupled 3 4 Input 1 path grounded 5 6 Input 1 d c coupled JP2 Input 1 Channel Select Jumper...

Page 11: ...n the Evaluation Board Test Point Function TP 1 DUT supply voltage TP 2 ADC CSb TP 3 ADC DIN TP 4 ADC DOUT TP 5 SCLK TP 6 INPUT1 Signal input to DUT TP 7 INPUT2 Signal input to DUT TP 8 Board 5 5V Sup...

Page 12: ...can be reasonably expected to result in a significant injury to the user 2 A critical component is any component in a life support device or system whose failure to perform can be reasonably expected...

Page 13: ...or use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury or death unless officers of the parties have...

Reviews: