background image

Temperature

Compensating Type

High Dielectric
Constant Type

16

Humidity

Appearance

No defects or abnormalities.

Set the capacitor at 40±2

 and in 90 to 95% humiduty

(Steady State)

for 500±12 hours.

Capacitance

Within 

±

5% or

±

 0.5pF

B1,B3,R1,R6,R7,R9,C7,C8,L8:Within 

±

12.5%

Remove and set for 24±2 hours at room temperature, 

Change

(Whichever is larger)

F1,F5      :Within 

±

30%

then measure.

Q/D.F.

30pF and over:Q

350

B1,B3,R1,R6,R7,C7,C8,L8

10pF and over

W.V.:100V :0.05max.( C

0.068

m

F)

30pF and below:Q

275+5C/2

                  :0.075max.(C

0.068

m

F)

10pF and below:Q

200+10C

W.V.:50V/25V :0.05max.
W.V.:16V/10V :0.05max.

 C:Nominal Capacitance(pF)

W.V.:6.3V/4V  :0.075max.(C

3.3

m

F)

                       :0.125max.(C

3.3

m

F)

[R9]
W.V.:50V: 0.075max.
[F1,F5]
W.V.:25Vmin

    :0.075max. (C

0.1

m

F)

    :0.125max. (C

0.1

m

F)

W.V.:16V/10V:0.15max.

W.V.:6.3V:0.2max.

I.R.

More than 1,000M

W

 or 50

W

·F(Whichever is smaller)

17

Humidity Load

Appearance

No defects or abnormalities.

Apply the rated voltage at 40±2

 and 90 to 95% humidity

for 500±12 hours. Remove and set for 24±2 hours at room 

Capacitance Within 

±

7.5% or

±

0.75pF

B1,B3,R1,R6,R7,R9,C7,C8,L8:

Within

 

±

12.5%

temprature, then muasure. The charge/discharge current 

Change

(Whichever is larger)

F1,F5      :Within 

±

30%

is less than 50mA.

[W.V.:10Vmax.]

F1  :30/-40%

Q/D.F.

30pF and over:Q

200

B1,B3,R1,R6,R7,C7,C8,L8

• Initial measurement for F1/10Vmax.

30pF and below:Q

100+10C/3 W.V.:100V :0.05max.( C

0.068

m

F)

Apply the rated DC voltage for 1 hour at 40±2

.

                  :0.075max.(C

0.068

m

F)

Remove and set for 24±2 hours at room temperature.

   C:Nominal Capacitance(pF)

W.V.:50V/25V :0.05max.

Perform initial measurement.

W.V.:16V/10V :0.05max.

W.V.:6.3V/4V  :0.075max.(C

3.3

m

F)

                       :0.125max.(C

3.3

m

F)

             

[R9]
W.V.:50V: 0.075max.
[F1,F5]
W.V.:25Vmin

    :0.075max. (C

0.1

m

F)

    :0.125max. (C

0.1

m

F)

W.V.:16V/10V:0.15max.

W.V.:6.3V:0.2max.

I.R.

More than 500MΩ or 25Ω·F(Whichever is smaller)

18

High Temperature

Appearance No defects or abnormalities.

Apply 200% of the rated voltage at the maximum

Load

operating temperature±3

 for 1000±12 hours.

Capacitance

Within 

±

3% or 

±

0.3pF

B1,B3,R1,R6,R7,R9,C7,C8,L8:

Within

 

±

12.5%

Set for 24±2 hours at room temperature, then measure.

Change

(Whichever is larger)

F1,F5      :Within 

±

30%

The charge/discharge current is less than 50mA.

[Except 35V,10Vmax and C

1.0. 

m

F]

 

F1  :30/-40%

[35V, 10Vmax and C

1.0. 

m

F]

Q/D.F.

30pF and over:Q

350

B1,B3,R1,R6,R7,C7,C8,L8

Initial measurement for high dielectric constant type.

10pF and over

W.V.:100V :0.05max.( C

0.068

m

F)

 Apply 200% of the rated DC voltage at the maximun operating

30pF and below: Q

275+5C/2

                  :0.075max.(C

0.068

m

F)

 temperature ±3°C for one hour. Remove and set for

10pF and below:Q

200+10C

W.V.:50V/25V  :0.05max.

 24±2 hours at room temperature.

W.V.:16V/10V  :0.05max.

 Perform initial measurement.

   C:Nominal Capacitance (pF)

W.V.:6.3V/4V   :0.075max.(C

3.3

m

F)

                        :0.125max.(C

3.3

m

F)

[R9]
W.V.:50V: 0.075max.
[F1,F5]
W.V.:25Vmin

    :0.075max. (C

0.1

m

F)

    :0.125max. (C

0.1

m

F)

W.V.:16V/10V:0.15max.

W.V.:6.3V:0.2max.

I.R.

More than 1,000M

W

 or 50

W

·F(Whichever is smaller)

SPECIFICATIONS AND TEST METHODS

No

Item

Specification

Test Method

Table A

 

Char. 

Nominal 

Values 

(ppm/

C) * 

Capacitance Change from 20

C (%) 

-55 

-25 

-10 

Max. 

Min. 

Max. 

Min. 

Max. 

Min. 

2C/0C 

      0

±

  60 

0.82 

-0.45 

0.49 

-0.27 

0.33 

-0.18 

3C 

      0

±

120 

1.37 

-0.90 

0.82 

-0.54 

0.55 

-0.36 

4C 

      0

±

250 

2.56 

-1.88 

1.54 

-1.13 

1.02 

-0.75 

2P 

-150

±

  60 

1.32 

  0.41 

0.88 

  0.27 

3P 

-150

±

120 

1.65 

  0.14 

1.10 

  0.09 

4P 

-150

±

250 

2.36 

-0.45 

1.57 

-0.30 

2R 

-220

±

  60 

1.70 

  0.72 

1.13 

  0.48 

3R 

-220

±

120 

2.03 

  0.45 

1.35 

  0.30 

4R 

-220

±

250 

2.74 

-0.14 

1.83 

-0.09 

2S 

-330

±

  60 

2.30 

  1.22 

1.54 

  0.81 

3S 

-330

±

120 

2.63 

  0.95 

1.76 

  0.63 

4S 

-330

±

250 

3.35 

  0.36 

2.23 

  0.24 

2T 

-470

±

  60 

3.07 

  1.85 

2.05 

  1.23 

3T 

-470

±

120 

3.40 

  1.58 

2.27 

  1.05 

4T 

-470

±

250 

4.12 

  0.99 

2.74 

  0.66 

3U 

-750

±

120 

4.94 

  2.84 

3.29 

  1.89 

4U 

-750+250 

5.65 

  2.25 

3.77 

  1.50 

1X 

+350 to -1000 

* Nominal values denote the temperature coefficient within a range of 20

C to 125

C(for 

C)/ 150

C(for 0C)/85

C(for other TC).

 

JEMCGS-0001S

4

Summary of Contents for GRM21BF51A475ZA01 Series

Page 1: ...20 30 to 85 C 82 to 22 30 to 85 C 25 C 3 Temperature Characteristics Public STD Code Y5V EIA Specifications and Test Methods Operationg Temp Range Temp coeff or Cap Change 5 Nominal Capacitance 6 Capa...

Page 2: ...each Temperature tolerance Table A 25 C to 85 C specified temp stage Characteristics R1 R7 Within 15 1 Temperature Compensating Type 55 C to 125 C The temperature coefficient is determind using the c...

Page 3: ...seconds at 230 5 or Sn 3 0Ag 0 5Cu solder solution for 2 0 5 seconds at 245 5 14 Resistance to Appearance No defects or abnormalities Preheat the capacitor at 120 to 150 for 1 minute Soldering Heat I...

Page 4: ...mperature Appearance No defects or abnormalities Apply 200 of the rated voltage at the maximum Load operating temperature 3 for 1000 12 hours Capacitance Within 3 or 0 3pF B1 B3 R1 R6 R7 R9 C7 C8 L8 W...

Page 5: ...dr Fig 1 in mm Fig 3 in mm Fig 2 in mm SPECIFICATIONS AND TEST METHODS Type Dimension mm a b c GRM02 0 2 0 56 0 23 GRM03 0 3 0 9 0 3 GRM15 0 4 1 5 0 5 GRM18 1 0 3 0 1 2 GRM21 1 2 4 0 1 65 GRM31 2 2 5...

Page 6: ...000 GR 18 4000 10000 5 6 9 4000 3000 10000 A B 3000 10000 6 9 4000 10000 M X 3000 10000 C 2000 6000 5 6 9 4000 10000 A M 3000 10000 N 2000 8000 C 2000 6000 R D E 1000 4000 M 1000 5000 N C R D 1000 400...

Page 7: ...ance 0 05 GR 15 Dimensions Tolerance 0 05 GR 15 Dimensions Tolerance 0 1 GR 15 Dimensions Tolerance 0 15 GR 15 Dimensions Tolerance 0 2 A 3 0 37 0 39 0 65 0 70 0 72 0 75 B 3 0 67 0 69 1 15 1 20 1 25 1...

Page 8: ...1 05 0 1 1 10 0 1 1 05 0 1 1 55 0 15 2 0 0 2 2 8 0 2 B 1 85 0 1 2 00 0 1 2 00 0 1 2 3 0 15 3 6 0 2 3 6 0 2 8 0 0 3 4 0 0 1 3 5 0 05 1 75 0 1 2 0 0 1 1 5 0 1 0 1 7 max T 1 25mm 2 5 max T 1 35 1 6mm 3...

Page 9: ...e GR 43 GR 55 A 2 3 6 5 2 B 2 4 9 6 1 2 Nominal value Package GRM F Type 1 5 0 1 0 4 0 0 1 8 0 0 1 1 5 0 2 0 12 0 0 3 5 5 0 1 1 75 0 1 1 2 5 max T 1 8mm 3 7 max T 2 0 2 5mm 4 7 max T 2 8mm 1 2 0 0 1 0...

Page 10: ...ecified in 1 2 Base Tape As specified in 1 2 Bottom Tape Thickness 0 05 Only a bottom tape existence W w1 GR 02 8 0 max 5 1 5 GR 32 max 16 5 max 10 1 5 GR 43 55 20 5 max 14 1 5 180 0 3 0 330 2 0 50 mi...

Page 11: ...There are no fuzz in the cavity 1 10 Break down force of top tape 5N min Break down force of bottom tape 5N min Only a bottom tape existence 1 11 Reel is made by resin and appeaser and dimension is sh...

Page 12: ...ght dust rapid temperature changes corrosive gas atmosphere or high temperature and humidity conditions during storage may affect the solderability and the packaging performance Please use product wit...

Page 13: ...tended environment and operating conditions Typical temperature characteristics Char R6 X5R Typical temperature characteristics Char R7 X7R Typical temperature characteristics Char F5 Y5V 2 Measuremen...

Page 14: ...Pulse voltage E Maximum possible applied voltage 1 2 Influence of overvoltage Overvoltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the inte...

Page 15: ...ure characteristics And check capacitors using your actual appliances at the intended environment and operating conditions 2 The capacitance values of high dielectric constant type capacitors change d...

Page 16: ...ted circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor Soldering and Mounting 1 Mounting Position 1 Confirm the best mounting position...

Page 17: ...ssive forces are not applied to the capacitors 1 1 In mounting the capacitors on the printed circuit board any bending force against them shall be kept to a minimum to prevent them from any bending da...

Page 18: ...ions Infrared Reflow Vapor Reflow Peak Temperature 230 250 230 240 240 260 Atmosphere Air Air Air or N2 Pb Sn Solder Sn 37Pb Lead Free Solder Sn 3 0Ag 0 5Cu In case of repeated soldering the accumulat...

Page 19: ...maintain the temperature difference T between the component and solvent within the range shown in the table 2 4 Do not apply flow soldering to chips not listed in Table 2 Table 2 Temperature Different...

Page 20: ...Lead Free Solder Sn 3 0Ag 0 5Cu 4 Optimum Solder amount when re working with a Soldering lron 4 1 In case of sizes smaller than 0603 GR 03 15 18 the top of the solder fillet should be lower than 2 3...

Page 21: ...rmance of a capacitor after mounting on the printed circuit board 1 1 Avoid bending printed circuit board by the pressure of a test pin etc The thrusting force of the test probe can flex the PCB resul...

Page 22: ...and from the front side of board as below the capacitor may form a crack caused by the tensile stress applied to capacitor Outline of jig 2 Example of a suitable machine An outline of a printed circu...

Page 23: ...can cause condensation 2 Others 2 1 In an Emergency 1 If the equipment should generate smoke fire or smell immediately turn off or unplug the equipment If the equipment is not turned off or unplugged...

Page 24: ...capacitors 1 1 The capacitor when used in the above unsuitable operating environments may deteriorate due to the corrosion of the terminations and the penetration of moisture into the capacitor 1 2 Th...

Page 25: ...sibility of chip crack caused by PCB expansion contraction with heat Because stress for chip is different depend on PCB material and structure Especially metal PCB such as alumina has a greater risk o...

Page 26: ...GR 32 3 2 2 5 2 0 2 4 1 0 1 2 1 8 2 3 GR 43 4 5 3 2 3 0 3 5 1 2 1 4 2 3 3 0 GR 55 5 7 5 0 4 0 4 6 1 4 1 6 3 5 4 8 in mm GR 21 1 9 2 1 1 0 1 3 1 7 1 9 2 0 1 25 0 15 1 2 0 6 0 8 1 2 1 4 GR 31 3 2 1 6 wi...

Page 27: ...rol curing temperature and time in order to prevent insufficient hardening 4 Flux Application 1 An excessive amount of flux generates a large quantity of flux gas which can cause a deterioration of So...

Page 28: ...ed as an under coating to buffer against the stress 2 Select a resin that is less hygroscopic Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resi...

Page 29: ...cation 3 We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications drawings or other technical documents Therefore if you...

Reviews: