background image

LTM4636

21

4636f

For more information 

www.linear.com/LTM4636

applicaTions inForMaTion

As a practical matter, it should be clear to the reader that 

no individual or sub-group of the four thermal resistance 

parameters defined by JESD51-12 or provided in the Pin 

Configuration section replicates or conveys normal op-

erating conditions of a µModule regulator. For example, 

in normal board-mounted applications, never does 100% 

of  the  device’s  total  power  loss (heat)  thermally  con-

duct exclusively through the top or exclusively through  

the  bottom  of  the µModule  package—as  the  standard 

defines for 

θ

JCtop

 and 

θ

JCbottom

, respectively. In practice, 

power loss is thermally dissipated in both directions away 

from the package—granted, in the absence of a heat sink 

and airflow, a majority of the heat flow is into the board.
Within the LTM4636, be aware there are multiple power 

devices and components dissipating power, with a con-

sequence that the thermal resistances relative to different 

junctions of components or die are not exactly linear with 

respect  to  total  package  power  loss.  To  reconcile  this 

complication without sacrificing modeling simplicity—but 

also not ignoring practical realities—an approach has been 

taken using FEA software modeling along with laboratory 

testing in a controlled-environment chamber to reason-

ably define and correlate the thermal resistance values 

supplied in this data sheet: (1) Initially, FEA software is 

used to accurately build the mechanical geometry of the 

LTM4636 and the specified PCB with all of the correct 

material coefficients along with accurate power loss source 

definitions; (2) this model simulates a software-defined 

JEDEC environment consistent with JESD51-12 to predict 

power loss heat flow and temperature readings at different 

interfaces that enable the calculation of the JEDEC-defined 

thermal resistance values; (3) the model and FEA software 

is used to evaluate the LTM4636 with heat sink and airflow; 

(4) having solved for and analyzed these thermal resis-

tance values and simulated various operating conditions 

in the software model, a thorough laboratory evaluation 

replicates the simulated conditions with thermocouples 

within a controlled-environment chamber while operat-

ing the device at the same power loss as that which was 

simulated. The outcome of this process and due diligence 

yields the set of derating curves shown in this data sheet. 

The power loss curves in Figures 10 to 12 can be used 

in  coordination  with  the  load  current  derating  curves 

in Figures 13 to 18 for calculating an approximate 

θ

JA

 

thermal resistance for the LTM4636 with various airflow 

conditions.  The  power  loss  curves  are  taken  at  room 

temperature and can be increased with a multiplicative 

factor  according  to  the  junction  temperature,  which  is 

~1.4  for 120°C.  The  derating  curves  are  plotted  with 

the  output  current  starting  at 40A  and  the  ambient 

temperature  increased.  The  output  voltages  are 1V, 

2.5V and 3.3V. These are chosen to include the lower, 

middle and higher output voltage ranges for correlating 

the  thermal  resistance.  Thermal  models  are  derived 

from several temperature measurements in a controlled 

temperature  chamber  along  with  thermal  modeling 

analysis. The junction temperatures are monitored while 

ambient temperature is increased with and without airflow.  

The power loss increase with ambient temperature change 

is  factored  into  the  derating  curves.  The  junctions  are 

maintained at ~125°C maximum while lowering output 

current or power with increasing ambient temperature. 

The decreased output current will decrease the internal 

module  loss  as  ambient  temperature  is  increased.  

The  monitored  junction  temperature  of 125°C  minus 

the ambient operating temperature specifies how much 

module temperature rise can be allowed. As an example, in  

Figure 14 the load current is derated to ~30A at ~94°C 

with no air flow and the power loss for the 12V to 1.0V 

at 30A output is about 4.2W. The 4.2W loss is calculated 

with  the ~3W  room  temperature  loss  from  the 12V  to 

1.0V power loss curve at 30A, and the 1.4 multiplying 

factor at 125°C junction. If the 94°C ambient temperature 

is subtracted from the 125°C junction temperature, then 

the difference of 31°C divided by 4.2W equals a 7.4°C/W 

θ

JA

 thermal resistance. Table 2 specifies a 7.2°C/W value 

which is very close. Tables 2, 3, and 4 provide equivalent 

thermal resistances for 1V, 1.5V and 3.3V outputs with 

and without airflow and heat sinking. The derived thermal 

resistances in Tables 2 thru 4 for the various conditions 

can be multiplied by the calculated power loss as a function 

of ambient temperature to derive temperature rise above 

Summary of Contents for Analog Devices LTM4636-1

Page 1: ...including 5481178 5847554 6580258 6304066 6476589 6774611 6677210 8163643 1V 40A DC DC Module Regulator Features Applications n Stacked Inductor Acts as Heat Sink n Wide Input Voltage Range 4 7V to 1...

Page 2: ...A JCtop JBA is Board to Ambient TEMP TEMP 0 3V to 0 8V INTVCC Peak Output Current Note 6 20mA Internal Operating Temperature Range Note 2 40 C to 125 C Storage Temperature Range 55 C to 125 C Reflow P...

Page 3: ...nput Supply Current VIN 5V VOUT 1 5V IOUT 40A VIN 12V VOUT 1 5V IOUT 40A 14 7 5 66 A A Output Specifications IOUT DC Output Continuous Current Range VIN 12V VOUT 1 5V Note 4 0 40 A VOUT Line VOUT Line...

Page 4: ...er MOSFETs UVLO PVCC Rising 3 5 3 8 4 1 V PVCC HYS PVCC UVLO Hysteresis 0 45 V PVCC Power Stage Bias 12V Input PVCC Load 50mm 5 0 V Oscillator and Phase Locked Loop fOSC Oscillator Frequency VPHSMD 0V...

Page 5: ...40 of IMAX Load See the Applications Information section Note 4 See output current derating curves for different VIN VOUT and TA Note 5 Guaranteed by design Note 6 100 tested at wafer level SYMBOL PAR...

Page 6: ...IV VOUT 0 5V DIV 4636 G13 RUN PIN CAPACITOR 0 1 F TRACK SS CAPACITOR 0 1 F COUT 4 100 F CERAMIC AND 3 470 F 20ms DIV VIN 5V DIV VOUT 0 5V DIV 4636 G14 100 s DIV LIN 200mA DIV VOUT 0 5V DIV 4636 G15 12...

Page 7: ...output voltage exceeds a 7 5 regulation window RUNC E2 Run Control Pin A voltage above 1 35V will turn on the control section of the module A 10k resistor to ground is internal to the module for sett...

Page 8: ...VLOwithavoltagedivider SeeFigure1 NC G9 No Connection PVCC F9 5VPower Output and Power for Internal Power MOSFETDrivers Theregulatorcanpower50mAofexternal sourcing for additional use Place a 22 F cera...

Page 9: ...CONNECTED AT PCB SNS 470pF Q1 1 F 22 F V IN PV CC 0 85V ON INTERNAL 5V REGULATOR 2 2 2 2 0805 SGND SNSP2 CONNECT TO SNSP1 TEMP GMON TMON PWM V OUTS1 TEMP TEMP GND V OUT V OUT 1 5V AT 40A SW V IN V IN...

Page 10: ...ion has been provided for external loop compensation LTpowerCAD can be used to optimize the external compensation option See the Applications Information section Currentmodecontrolprovidescycle by cyc...

Page 11: ...e 1 VFB Resistor Table vs Various Output Voltages VOUT V 0 6 1 0 1 2 1 5 1 8 2 5 3 3 RFB k Open 7 5 4 99 3 32 2 49 1 58 1 1 For parallel operation of N LTM4636s the following equation can be used to s...

Page 12: ...current of the inductor is set to approximately 30 of the maximum peak current value in normal operation even though the voltage at the COMPA pin indicates a lower value The voltage at the COMPA pin d...

Page 13: ...sharing Thiswillbalancethethermalsinthedesign Tiethe COMPA to COMPB and then tie the COMPA pins together tie VFB pins of each LTM4636 together to share the cur rent evenly Figure 21 shows a schematic...

Page 14: ...as tON MIN 1 FREQ VOUT VIN Applications Information The LTM4636 s CLKOUT pin phase difference from VOUT can be programmed by applying a voltage to the PHMODE pin Thisvoltagecanbeprogrammedusingthe5 5...

Page 15: ...using a soft start capacitor A 1 25 A current source is used to charge the soft start capacitor The following equation can be used tSOFT START 0 6V CSS 1 25 A Figure 4 Phase Selection Examples LTM4636...

Page 16: ...100 F 25V INTVCC1 OPTIONAL TEMP MONITOR FOR TELEMETRY READBACK ICs INTVCC INTVCC1 5V PVCC1 LTM4636 PVCC PGND VOUTS1 VOUTS1 VFB 470 F 6 3V 470 F 6 3V 470 F 6 3V RFB 3 32k 100 F 4 6 3V 4636 F05 COMPA C...

Page 17: ...elow its threshold or the VIN undervoltage lockout then TRACK SS is pulled low Default Overcurrent and Overvoltage Protection The LTM4636 has overcurrent protection OCP in a short circuit The internal...

Page 18: ...N I2 IS Combining like terms then simplifying the natural log terms yields VD T KELVIN KD lN 10 and redefining constant K D KD IN 10 198 V K yields VD K D T KELVIN Figure 7 Diode Voltage VD vs Tempera...

Page 19: ...rnal compensation and output capacitance for the desired optimized response SW Pins The SW pins are generally for testing purposes by moni toring these pins These pins can also be used to dampen out s...

Page 20: ...but there is always heat flow out into the ambient environment As a result this thermal resistance value may be useful for comparing packages but the test conditionsdon tgenerallymatchtheuser sapplica...

Page 21: ...g the device at the same power loss as that which was simulated The outcome of this process and due diligence yields the set of derating curves shown in this data sheet The power loss curves in Figure...

Page 22: ...100 0LFM 200LFM 400LFM AMBIENT TEMPERATURE C LOAD CURRENT A Figure 13 5VIN 1VOUT Derate Curve Applications Information Figure 15 5VIN 1 5VOUT Derate Curve Figure 14 12VIN 1VOUT Derate Curve Figure 10...

Page 23: ...12V Figure 10 12 400 4 5 Table 4 3 3V DERATING CURVE VIN POWER LOSS CURVE AIRFLOW LFM JA C W Figures 17 18 12V Figure 10 12 0 7 4 Figures 17 18 12V Figure 10 12 200 5 0 Figures 17 18 12V Figure 10 12...

Page 24: ...12 40 80 30 15 10 350 0 9 22 F 5 100 F 220 F 10 470 F None 220 5 12 40 80 30 15 10 350 1 22 F 5 100 F 100 F 4 470 F 3 None 100 5 12 40 80 30 15 7 5 350 1 22 F 5 100 F 100 F 6 470 F 2 None 100 5 12 50...

Page 25: ...o this system A fuse or circuit breaker can be used as a secondary fault protector in this situation The LTM4636 has the enhanced over temperature protection discussedearlierandschematicapplicationswi...

Page 26: ...cations Information Figure 19 Recommended PCB Layout 1 M L K J H G F E D C B A 2 3 4 5 6 7 VOUT VOUT COUT1 CIN2 CIN1 CIN4 CIN3 COUT2 R RUNC VOUT GND TEMP SENSE GND GND 4636 F19 VIN GND 8 9 10 11 12 CO...

Page 27: ...C 34 8k SGND SGND SGND CSS 0 1 F 22 F 1V AT 40A 2 2 0805 0 1 F 4 70V TO 14V 100 F 25V 22 F 16V 5 INTVCC OPTIONAL TEMP MONITOR INTVCC INTVCC LTM4636 PVCC PGND VOUTS1 VOUTS1 VFB 470 F 6 3V 470 F 6 3V 47...

Page 28: ...ITOR 470 F 6 3V 470 F 6 3V 100 F 6 3V 4 COMPA COMPB TK SS RUNC RUNP HIZREG PHMODE FREQ MODE PLLIN CLKOUT TMON SW VOUT TEMP TEMP SNSP1 SNSP2 SGND VIN 22 F 2200pF VOLTAGE OUT TEMP MONITOR 2 2 0805 22 F...

Page 29: ...SS 0 22 F 22 F 16V 3 COMP TK SS RUNC RUNP OPTIONAL TEMP MONITOR FOR TELEMETRY READBACK ICs INTVCC INTVCC2 5V PVCC2 U2 LTM4636 PVCC PGND VOUTS1 VFB VFB 4636 F22 470 F 6 3V 470 F 6 3V RFB3 10k 100 F 6 3...

Page 30: ...rd Figure 25 Efficiency 12V to 0 9V at 120A Figure 26 12V to 0 9V 30A s Load Step 4636 F24 4636 F23 LOAD CURRENT A 0 EFFICIENCY 95 85 75 90 80 70 65 60 50 60 70 90 100110 40 20 30 80 4636 F25 120 10 4...

Page 31: ...HIZREG PHMODE FREQ MODE PLLIN CLKOUT TMON PWM SW VOUT TEMP TEMP SNSP1 SNSP2 SGND VIN 34 8k 22 f GND_SNS VOLTAGE OUT TEMP MONITOR INTVCC3 RUNC RUNP CLK3 CLK2 TK SS COMP OPTIONAL TEMP MONITOR FOR TELEM...

Page 32: ...ons Figure 29 Thermal Plot 12V to 0 9V at 160A 400LFM Air Flow Figure 28 DC2448A Demo Board 4636 F29 4636 F28 LOAD CURRENT A 0 EFFICIENCY 95 85 75 90 80 70 65 60 60 100 40 20 80 4636 F30 160 120 140 4...

Page 33: ...VOUT E11 TEST 4 F11 GND A12 VOUT B12 VOUT C12 VOUT D12 VOUT E12 GND F12 GND PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION G1 GND H1 GND J1 GND K1 GND...

Page 34: ...VOUT PGOOD RUNC SNSP2 SNSP1 1 2 3 4 5 6 7 TOP VIEW 8 9 10 11 12 M L K J H G F E D C B A COMPB TEST2 TEST4 GND GND INTVCC PVCC PHASMD RUNP TEMP TEMP NC CLKOUT SGND SGND VFB VOUTS1 HIZREG TRACK SS COMPA...

Page 35: ...TATION COMPONENT PIN A1 DETAIL A PIN 1 0 0000 0 0000 DETAIL A b 144 PLACES D 3 0 2 4 2 4 A DETAIL B PACKAGE SIDE VIEW Z Z M X Y Z ddd M Z eee 0 630 0 025 144x E b e e b A2 F G BGA Package 144 Lead 16m...

Page 36: ...Assembly and Manufacturing Guidelines Package and Board Level Reliability Module Regulator Products Search 1 Sort table of products by parameters and download the result as a spread sheet 2 Search us...

Reviews: