background image

LTM4636

12

4636f

For more information 

www.linear.com/LTM4636

applicaTions inForMaTion

Output Capacitors

The LTM4636 is designed for low output voltage ripple 

noise.  The  bulk  output  capacitors  defined  as  C

OUT

  are 

chosen with low enough effective series resistance (ESR) 

to meet the output voltage ripple and transient require-

ments. C

OUT

 can be a low ESR tantalum capacitor, low 

ESR Polymer capacitor or ceramic capacitors. The typi-

cal output capacitance range is from 400µF to 1000µF. 

Additional output filtering may be required by the system 

designer if further reduction of output ripple or dynamic 

transient spikes is required. Table 5 shows a matrix of dif-

ferent output voltages and output capacitors to minimize 

the voltage droop and overshoot during a 15A/µs tran-

sient. The table optimizes total equivalent ESR and total 

bulk capacitance to optimize the transient performance. 

Stability criteria are considered in the Table 5 matrix, and 

LTpowerCAD is available for stability analysis. Multiphase 

operation will reduce effective output ripple as a function 

of the number of phases. Application Note 77 discusses 

this noise reduction versus output ripple current cancel-

lation, but the output capacitance should be considered 

carefully as a function of stability and transient response. 

LTpowerCAD can be used to calculate the output ripple 

reduction as the number of implemented phases increases 

by N times. External loop compensation can be used for 

transient response optimization.

Burst Mode Operation

The LTM4636 is capable of Burst Mode operation in which 

the power MOSFETs operate intermittently based on load 

demand, thus saving quiescent current. For applications 

where maximizing the efficiency at very light loads is a 

high priority, Burst Mode operation should be applied. To 

enable Burst Mode operation, simply float the MODE_PLLIN 

pin. During Burst Mode operation, the peak current of the 

inductor is set to approximately 30% of the maximum 

peak current value in normal operation even though the 

voltage at the COMPA pin indicates a lower value. The 

voltage at the COMPA pin drops when the inductor’s aver-

age current is greater than the load requirement. As the 

COMPA voltage drops below 0.5V, the burst comparator 

trips, causing the internal sleep line to go high and turn 

off both power MOSFETs. 
In  sleep  mode,  the  internal  circuitry  is  partially  turned 

off, reducing the quiescent current. The load current is 

now being supplied from the output capacitors. When the 

output voltage drops, causing COMPA to rise, the internal 

sleep line goes low, and the LTM4636 resumes normal 

operation. The next oscillator cycle will turn on the top 

power MOSFET and the switching cycle repeats. 

Pulse-Skipping Mode Operation

In applications where low output ripple and high efficiency 

at  intermediate  currents  are  desired,  pulse-skipping 

mode should be used. Pulse-skipping operation allows 

the  LTM4636  to  skip  cycles  at  low  output  loads,  thus 

increasing efficiency by reducing switching loss. Tying 

the MODE_PLLIN pin to INTV

CC

 enables pulse-skipping 

operation.  With  pulse-skipping  mode  at  light  load,  the 

internal current comparator may remain tripped for several 

cycles,  thus  skipping  operation  cycles.  This  mode  has 

lower ripple than Burst Mode operation and maintains a 

higher frequency operation than Burst Mode operation.

Forced Continuous Operation

In applications where fixed frequency operation is more 

critical than low current efficiency, and where the lowest 

output  ripple  is  desired,  forced  continuous  operation 

should  be  used.  Forced  continuous  operation  can  be 

enabled by tying the MODE_PLLIN pin to ground. In this 

mode, inductor current is allowed to reverse during low 

output loads, the COMPA voltage is in control of the current 

comparator threshold throughout, and the top MOSFET 

always turns on with each oscillator pulse. During start-up, 

forced continuous mode is disabled and inductor current 

is prevented from reversing until the LTM4636’s output 

voltage is in regulation. 

Summary of Contents for Analog Devices LTM4636-1

Page 1: ...including 5481178 5847554 6580258 6304066 6476589 6774611 6677210 8163643 1V 40A DC DC Module Regulator Features Applications n Stacked Inductor Acts as Heat Sink n Wide Input Voltage Range 4 7V to 1...

Page 2: ...A JCtop JBA is Board to Ambient TEMP TEMP 0 3V to 0 8V INTVCC Peak Output Current Note 6 20mA Internal Operating Temperature Range Note 2 40 C to 125 C Storage Temperature Range 55 C to 125 C Reflow P...

Page 3: ...nput Supply Current VIN 5V VOUT 1 5V IOUT 40A VIN 12V VOUT 1 5V IOUT 40A 14 7 5 66 A A Output Specifications IOUT DC Output Continuous Current Range VIN 12V VOUT 1 5V Note 4 0 40 A VOUT Line VOUT Line...

Page 4: ...er MOSFETs UVLO PVCC Rising 3 5 3 8 4 1 V PVCC HYS PVCC UVLO Hysteresis 0 45 V PVCC Power Stage Bias 12V Input PVCC Load 50mm 5 0 V Oscillator and Phase Locked Loop fOSC Oscillator Frequency VPHSMD 0V...

Page 5: ...40 of IMAX Load See the Applications Information section Note 4 See output current derating curves for different VIN VOUT and TA Note 5 Guaranteed by design Note 6 100 tested at wafer level SYMBOL PAR...

Page 6: ...IV VOUT 0 5V DIV 4636 G13 RUN PIN CAPACITOR 0 1 F TRACK SS CAPACITOR 0 1 F COUT 4 100 F CERAMIC AND 3 470 F 20ms DIV VIN 5V DIV VOUT 0 5V DIV 4636 G14 100 s DIV LIN 200mA DIV VOUT 0 5V DIV 4636 G15 12...

Page 7: ...output voltage exceeds a 7 5 regulation window RUNC E2 Run Control Pin A voltage above 1 35V will turn on the control section of the module A 10k resistor to ground is internal to the module for sett...

Page 8: ...VLOwithavoltagedivider SeeFigure1 NC G9 No Connection PVCC F9 5VPower Output and Power for Internal Power MOSFETDrivers Theregulatorcanpower50mAofexternal sourcing for additional use Place a 22 F cera...

Page 9: ...CONNECTED AT PCB SNS 470pF Q1 1 F 22 F V IN PV CC 0 85V ON INTERNAL 5V REGULATOR 2 2 2 2 0805 SGND SNSP2 CONNECT TO SNSP1 TEMP GMON TMON PWM V OUTS1 TEMP TEMP GND V OUT V OUT 1 5V AT 40A SW V IN V IN...

Page 10: ...ion has been provided for external loop compensation LTpowerCAD can be used to optimize the external compensation option See the Applications Information section Currentmodecontrolprovidescycle by cyc...

Page 11: ...e 1 VFB Resistor Table vs Various Output Voltages VOUT V 0 6 1 0 1 2 1 5 1 8 2 5 3 3 RFB k Open 7 5 4 99 3 32 2 49 1 58 1 1 For parallel operation of N LTM4636s the following equation can be used to s...

Page 12: ...current of the inductor is set to approximately 30 of the maximum peak current value in normal operation even though the voltage at the COMPA pin indicates a lower value The voltage at the COMPA pin d...

Page 13: ...sharing Thiswillbalancethethermalsinthedesign Tiethe COMPA to COMPB and then tie the COMPA pins together tie VFB pins of each LTM4636 together to share the cur rent evenly Figure 21 shows a schematic...

Page 14: ...as tON MIN 1 FREQ VOUT VIN Applications Information The LTM4636 s CLKOUT pin phase difference from VOUT can be programmed by applying a voltage to the PHMODE pin Thisvoltagecanbeprogrammedusingthe5 5...

Page 15: ...using a soft start capacitor A 1 25 A current source is used to charge the soft start capacitor The following equation can be used tSOFT START 0 6V CSS 1 25 A Figure 4 Phase Selection Examples LTM4636...

Page 16: ...100 F 25V INTVCC1 OPTIONAL TEMP MONITOR FOR TELEMETRY READBACK ICs INTVCC INTVCC1 5V PVCC1 LTM4636 PVCC PGND VOUTS1 VOUTS1 VFB 470 F 6 3V 470 F 6 3V 470 F 6 3V RFB 3 32k 100 F 4 6 3V 4636 F05 COMPA C...

Page 17: ...elow its threshold or the VIN undervoltage lockout then TRACK SS is pulled low Default Overcurrent and Overvoltage Protection The LTM4636 has overcurrent protection OCP in a short circuit The internal...

Page 18: ...N I2 IS Combining like terms then simplifying the natural log terms yields VD T KELVIN KD lN 10 and redefining constant K D KD IN 10 198 V K yields VD K D T KELVIN Figure 7 Diode Voltage VD vs Tempera...

Page 19: ...rnal compensation and output capacitance for the desired optimized response SW Pins The SW pins are generally for testing purposes by moni toring these pins These pins can also be used to dampen out s...

Page 20: ...but there is always heat flow out into the ambient environment As a result this thermal resistance value may be useful for comparing packages but the test conditionsdon tgenerallymatchtheuser sapplica...

Page 21: ...g the device at the same power loss as that which was simulated The outcome of this process and due diligence yields the set of derating curves shown in this data sheet The power loss curves in Figure...

Page 22: ...100 0LFM 200LFM 400LFM AMBIENT TEMPERATURE C LOAD CURRENT A Figure 13 5VIN 1VOUT Derate Curve Applications Information Figure 15 5VIN 1 5VOUT Derate Curve Figure 14 12VIN 1VOUT Derate Curve Figure 10...

Page 23: ...12V Figure 10 12 400 4 5 Table 4 3 3V DERATING CURVE VIN POWER LOSS CURVE AIRFLOW LFM JA C W Figures 17 18 12V Figure 10 12 0 7 4 Figures 17 18 12V Figure 10 12 200 5 0 Figures 17 18 12V Figure 10 12...

Page 24: ...12 40 80 30 15 10 350 0 9 22 F 5 100 F 220 F 10 470 F None 220 5 12 40 80 30 15 10 350 1 22 F 5 100 F 100 F 4 470 F 3 None 100 5 12 40 80 30 15 7 5 350 1 22 F 5 100 F 100 F 6 470 F 2 None 100 5 12 50...

Page 25: ...o this system A fuse or circuit breaker can be used as a secondary fault protector in this situation The LTM4636 has the enhanced over temperature protection discussedearlierandschematicapplicationswi...

Page 26: ...cations Information Figure 19 Recommended PCB Layout 1 M L K J H G F E D C B A 2 3 4 5 6 7 VOUT VOUT COUT1 CIN2 CIN1 CIN4 CIN3 COUT2 R RUNC VOUT GND TEMP SENSE GND GND 4636 F19 VIN GND 8 9 10 11 12 CO...

Page 27: ...C 34 8k SGND SGND SGND CSS 0 1 F 22 F 1V AT 40A 2 2 0805 0 1 F 4 70V TO 14V 100 F 25V 22 F 16V 5 INTVCC OPTIONAL TEMP MONITOR INTVCC INTVCC LTM4636 PVCC PGND VOUTS1 VOUTS1 VFB 470 F 6 3V 470 F 6 3V 47...

Page 28: ...ITOR 470 F 6 3V 470 F 6 3V 100 F 6 3V 4 COMPA COMPB TK SS RUNC RUNP HIZREG PHMODE FREQ MODE PLLIN CLKOUT TMON SW VOUT TEMP TEMP SNSP1 SNSP2 SGND VIN 22 F 2200pF VOLTAGE OUT TEMP MONITOR 2 2 0805 22 F...

Page 29: ...SS 0 22 F 22 F 16V 3 COMP TK SS RUNC RUNP OPTIONAL TEMP MONITOR FOR TELEMETRY READBACK ICs INTVCC INTVCC2 5V PVCC2 U2 LTM4636 PVCC PGND VOUTS1 VFB VFB 4636 F22 470 F 6 3V 470 F 6 3V RFB3 10k 100 F 6 3...

Page 30: ...rd Figure 25 Efficiency 12V to 0 9V at 120A Figure 26 12V to 0 9V 30A s Load Step 4636 F24 4636 F23 LOAD CURRENT A 0 EFFICIENCY 95 85 75 90 80 70 65 60 50 60 70 90 100110 40 20 30 80 4636 F25 120 10 4...

Page 31: ...HIZREG PHMODE FREQ MODE PLLIN CLKOUT TMON PWM SW VOUT TEMP TEMP SNSP1 SNSP2 SGND VIN 34 8k 22 f GND_SNS VOLTAGE OUT TEMP MONITOR INTVCC3 RUNC RUNP CLK3 CLK2 TK SS COMP OPTIONAL TEMP MONITOR FOR TELEM...

Page 32: ...ons Figure 29 Thermal Plot 12V to 0 9V at 160A 400LFM Air Flow Figure 28 DC2448A Demo Board 4636 F29 4636 F28 LOAD CURRENT A 0 EFFICIENCY 95 85 75 90 80 70 65 60 60 100 40 20 80 4636 F30 160 120 140 4...

Page 33: ...VOUT E11 TEST 4 F11 GND A12 VOUT B12 VOUT C12 VOUT D12 VOUT E12 GND F12 GND PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID FUNCTION G1 GND H1 GND J1 GND K1 GND...

Page 34: ...VOUT PGOOD RUNC SNSP2 SNSP1 1 2 3 4 5 6 7 TOP VIEW 8 9 10 11 12 M L K J H G F E D C B A COMPB TEST2 TEST4 GND GND INTVCC PVCC PHASMD RUNP TEMP TEMP NC CLKOUT SGND SGND VFB VOUTS1 HIZREG TRACK SS COMPA...

Page 35: ...TATION COMPONENT PIN A1 DETAIL A PIN 1 0 0000 0 0000 DETAIL A b 144 PLACES D 3 0 2 4 2 4 A DETAIL B PACKAGE SIDE VIEW Z Z M X Y Z ddd M Z eee 0 630 0 025 144x E b e e b A2 F G BGA Package 144 Lead 16m...

Page 36: ...Assembly and Manufacturing Guidelines Package and Board Level Reliability Module Regulator Products Search 1 Sort table of products by parameters and download the result as a spread sheet 2 Search us...

Reviews: