
.
Register 5
IO_SENSOR1_DATA
This register holds the actual data (solar radiation) measured by the sensor. The solar radiation is measured in W/m².
If the register
IO_SCALE_FACTOR is not set to 0 then you must multiply or divide the data as described under register 4.
The raw data from the sensor is calibrated, linearized; temperature compensated and filtered using 2 different kinds of filters
(See
IO_FAST_RESPONSE and IO_TRACKING_FILTER).
Register 6
IO_RAW_SENSOR1_DATA
The raw sensor data is calibrated but not linearized and temperature compensated. If the register
IO_SCALE_FACTOR is not set
to 0 then you must multiply or divide the data as described under register 4,
IO_SCALE_FACTOR.
Register 7
IO_STDEV_SENSOR1
This register is used to calculate the standard deviation over the signal. When the register is read the data is sent to the comput-
er and at the same time a new calculation is started. The next time register 7 is read the standard deviation over the last period
is sent to the computer and a new calculation is started. If the poll frequency is quite high (for example 1 poll per second) then
the standard deviation will be zero or almost zero, but if the poll frequency is very low then the standard deviation can be quite
high, indicating that the data in register 5 or 6 changed dramatically since the last poll. The standard deviation is measured in
0.1 W/m². To convert the data to a floating point, make the following calculation:
(floating point) result = (integer) register (IO_STDEV_SENSOR1) / 10.0
Register 8
IO_BODY_TEMPERATURE
The body temperature sensor measures the temperature of the body in 0.1°C.
The convert the data to a floating point number, make the following calculation:
(floating point) result = (integer) register (IO_BODY_TEMPERATURE) / 10.0
Register 9
IO_EXT_POWER_SENSOR
The Ext power sensor measured the external voltage applied to the sensor in 0.1 Volt.
The convert the data to a floating point number, make the following calculation:
(floating point) result = (integer) register (IO_EXT_POWER_SENSOR) / 10.0
Example
Read registers: ‘operational mode to external power’ from Modbus® device with address 1.
Tx
transmitted data to the smart sensor
Rx
received data from the smart sensor
SendModbusRequest (0x04, 1, IO_OPERATIONAL_MODE, 8);
Tx 01 04 00 02 00 08 50 0C
Rx 01 04 10 00 01 00 00 00 00 03 E5 03 E5 00 00 00 F8 00 EA 66 12
48