CAUTION:
Air for combustion must not be contami-
nated by halogen compounds, which include fluoride,
chloride, bromide, and iodide. These elements are found
in aerosol sprays, detergents, bleaches, cleaning solvents,
salts, air fresheners, and other household products.
All fuel-burning equipment must be supplied with air for combus-
tion of the fuel. Sufficient air MUST be provided to ensure there
will not be a negative pressure in the equipment room or space. In
addition, a positive seal MUST be made between the furnace
cabinet and the return-air duct to prevent pulling air from the
burner area and blocked vent safeguard opening.
CAUTION:
The operation of exhaust fans, kitchen ven-
tilation fans, clothes dryers, or fireplaces could create a
NEGATIVE PRESSURE CONDITION at the furnace.
Make-up air MUST BE PROVIDED for the ventilation
devices, in addition to that required by the furnace.
The requirements for combustion and ventilation air depend upon
whether the furnace is located in an unconfined or confined space.
A.
Unconfined Space
An unconfined space must have at least 50 cubic ft for each 1000
Btuh of input for all the appliances (such as furnaces, clothes
dryer, water heaters, etc.) in the space.
If the unconfined space is of unusually tight construction, air for
combustion and ventilation MUST come from either the outdoors
or spaces freely communicating with the outdoors. Combustion
and ventilation openings must be sized the same as for a confined
space as defined below. Return air must not be taken from the
room unless an equal or greater amount of air is supplied to the
room.
B.
Confined Space
A confined space is defined as a space whose volume is less than
50 cu ft per 1000 Btuh of total input ratings of all appliances
installed in that space. A confined space MUST have provisions
for supplying air for combustion, ventilation, and dilution of flue
gases using 1 of the following methods. (See Fig. 3, 4 and Table
2.)
NOTE:
In determining free area of an opening, the blocking
effect of louvers, grilles, and screens must be considered. If free
area of louver or grille design is unknown, assume that wood
louvers have a 20 percent free area and metal louvers or grilles
have a 60 percent free area. Screens, when used, must not be
smaller than 1/4-in. mesh. Louvers and grilles must be constructed
so they cannot be closed.
The size of the openings depends upon whether air comes from
outside of the structure or an unconfined space inside the structure.
1. All air from inside the structure requires 2 openings (for
structures not usually tight):
a. Each opening MUST have at least 1 sq in. of free area
per 1000 Btuh of total input for all equipment within the
confined space, but not less than 100 sq in. per opening.
(See Fig. 3 and Table 2.) The minimum dimension of air
openings shall not be less than 3 in.
b. If building is constructed unusually tight, a permanent
opening directly communicating with the outdoors shall
be provided. See item 2 below.
c. If furnace is installed on a raised platform to provide a
return-air plenum, and return air is taken directly from
hallway or space adjacent to furnace, all air for combus-
tion must come from outdoors.
2. Air from outside the structure requires 1 of the following
methods:
a. If combustion air is taken from outdoors through 2
vertical ducts, the openings and ducts MUST have at
least 1 sq in. of free area per 4000 Btuh of total input for
all equipment within the confined space. (See Fig. 4 and
Table 2.)
b. If combustion air is taken from outdoors through 2
horizontal ducts, the openings and ducts MUST have at
least 1 sq in. of free area per 2000 Btuh of total input for
all equipment within the confined space. (See Fig. 4 and
Table 2.)
c. If combustion air is taken from outdoors through a single
opening or duct (horizontal or vertical) commencing
within 12 in. of the top of the confined space, opening
and duct MUST have at least 1 sq in. of free area per
3000 Btuh of the total input for all equipment within the
confined space and not less than the sum of the areas of
all vent connectors in the confined space. (See Fig. 4 and
Table 2.) Equipment clearances to the structure shall be
at least 1 in. from the sides and back and 6 in. from the
front of the appliances.
When ducts are used, they must be of the same cross-sectional area
as the free area of the openings to which they connect. The
minimum dimension of ducts must not be less than 3 in. (See Fig.
4.)
AIR DUCTS
I.
GENERAL REQUIREMENTS
The duct system should be designed and sized according to
accepted national standards such as those published by: Air
Conditioning Contractors Association (ACCA), Sheet Metal and
Air Conditioning Contractors National Association (SMACNA) or
American Society of Heating, Refrigerating and Air Conditioning
Engineers (ASHRAE). Or consult factory The Air Systems Design
Guidelines reference tables available from your local distributor.
The duct system should be sized to handle the required system
design airflow CFM at the design external static pressure.
When a furnace is installed so that the supply ducts carry air to
areas outside the space containing the furnace, the return air must
also be handled by a duct(s) sealed to the furnace casing and
terminating outside the space containing the furnace.
Secure ductwork with proper fasteners for type of ductwork used.
Seal supply- and return-duct connections to furnace with code
approved tape or duct sealer.
Flexible connections should be used between ductwork and
furnace to prevent transmission of vibration. Ductwork passing
through unconditioned space should be insulated to enhance
system performance. When air conditioning is used, a vapor
barrier is recommended.
Maintain a 1-in. clearance from combustible materials to supply air
ductwork for a distance of 36 in. horizontally from the furnace. See
NFPA 90B or local code for further requirements.
For Example:
383KAV FURNACE
INPUT BTUH
MINIMUM SQ FT WITH
7-1/2 FT CEILING
44,000
293
66,000
440
88,000
587
110,000
733
132,000
880
154,000
1026
—5—
Summary of Contents for GAS-FIRED INDUCED-COMBUSTION FURNACES 383KAV
Page 19: ...19...