Serial Communications Interface (S08SCIV4)
MC9S08QL8 MCU Series Reference Manual, Rev. 1
NXP Semiconductors
199
14.3.5.2
Stop Mode Operation
During all stop modes, clocks to the SCI module are halted.
In stop1 and stop2 modes, all SCI register data is lost and must be re-initialized upon recovery from these
two stop modes. No SCI module registers are affected in stop3 mode.
The receive input active edge detect circuit is still active in stop3 mode, but not in stop2. . An active edge
on the receive input brings the CPU out of stop3 mode if the interrupt is not masked (RXEDGIE = 1).
Note, because the clocks are halted, the SCI module will resume operation upon exit from stop (only in
stop3 mode). Software should ensure stop mode is not entered while there is a character being transmitted
out of or received into the SCI module.
14.3.5.3
Loop Mode
When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Loop mode is sometimes used to check software, independent of
connections in the external system, to help isolate system problems. In this mode, the transmitter output is
internally connected to the receiver input and the RxD pin is not used by the SCI, so it reverts to a
general-purpose port I/O pin.
14.3.5.4
Single-Wire Operation
When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Single-wire mode is used to implement a half-duplex serial connection.
The receiver is internally connected to the transmitter output and to the TxD pin. The RxD pin is not used
and reverts to a general-purpose port I/O pin.
In single-wire mode, the TXDIR bit in SCIC3 controls the direction of serial data on the TxD pin. When
TXDIR = 0, the TxD pin is an input to the SCI receiver and the transmitter is temporarily disconnected
from the TxD pin so an external device can send serial data to the receiver. When TXDIR = 1, the TxD pin
is an output driven by the transmitter. In single-wire mode, the internal loop back connection from the
transmitter to the receiver causes the receiver to receive characters that are sent out by the transmitter.
Содержание MC9S08QL4
Страница 4: ...MC9S08QL8 MCU Series Reference Manual Rev 1 4 NXP Semiconductors...
Страница 24: ...Chapter 2 Pins and Connections MC9S08QL8 MCU Series Reference Manual Rev 1 24 NXP Semiconductors...
Страница 36: ...Chapter 3 Modes of Operation MC9S08QL8 MCU Series Reference Manual Rev 1 36 NXP Semiconductors...
Страница 56: ...Chapter 4 Memory MC9S08QL8 MCU Series Reference Manual Rev 1 56 NXP Semiconductors...
Страница 120: ...Analog Comparator S08ACMPVLPV1 MC9S08QL8 MCU Series Reference Manual Rev 1 120 NXP Semiconductors...
Страница 148: ...Analog to Digital Converter S08ADC12V1 MC9S08QL8 MCU Series Reference Manual Rev 1 148 NXP Semiconductors...
Страница 162: ...Internal Clock Source S08ICSV3 MC9S08QL8 MCU Series Reference Manual Rev 0 162 NXP Semiconductors...
Страница 172: ...Modulo Timer S08MTIMV1 MC9S08QL8 MCU Series Reference Manual Rev 1 172 NXP Semiconductors...
Страница 200: ...Serial Communications Interface S08SCIV4 MC9S08QL8 MCU Series Reference Manual Rev 1 200 NXP Semiconductors...
Страница 224: ...Timer Pulse Width Modulator S08TPMV3 MC9S08QL8 MCU Series Reference Manual Rev 1 224 NXP Semiconductors...
Страница 238: ...Development Support MC9S08QL8 MCU Series Reference Manual Rev 1 238 NXP Semiconductors...
Страница 239: ......