Analog-to-Digital Converter (S08ADC12V1)
MC9S08QL8 MCU Series Reference Manual, Rev. 1
NXP Semiconductors
141
10.4.7.2
Stop3 Mode With ADACK Enabled
If ADACK is selected as the conversion clock, the ADC continues operation during stop3 mode. For
guaranteed ADC operation, the MCU’s voltage regulator must remain active during stop3 mode. Consult
the module introduction for configuration information for this MCU.
If a conversion is in progress when the MCU enters stop3 mode, it continues until completion. Conversions
can be initiated while the MCU is in stop3 mode by means of the hardware trigger or if continuous
conversions are enabled.
A conversion complete event sets the COCO and generates an ADC interrupt to wake the MCU from stop3
mode if the ADC interrupt is enabled (AIEN = 1).
NOTE
The ADC module can wake the system from low-power stop and cause the
MCU to begin consuming run-level currents without generating a system
level interrupt. To prevent this scenario, software should ensure the data
transfer blocking mechanism (discussed in
) is cleared when entering stop3 and continuing ADC
conversions.
10.4.8
MCU Stop2 Mode Operation
The ADC module is automatically disabled when the MCU enters stop2 mode. All module registers
contain their reset values following exit from stop2. Therefore, the module must be re-enabled and
re-configured following exit from stop2.
10.5
Initialization Information
This section gives an example that provides some basic direction on how to initialize and configure the
ADC module. You can configure the module for 8-, 10-, or 12-bit resolution, single or continuous
conversion, and a polled or interrupt approach, among many other options. Refer to
, and
for information used in this example.
NOTE
Hexadecimal values designated by a preceding 0x, binary values designated
by a preceding %, and decimal values have no preceding character.
10.5.1
ADC Module Initialization Example
10.5.1.1
Initialization Sequence
Before the ADC module can be used to complete conversions, an initialization procedure must be
performed. A typical sequence is as follows:
1. Update the configuration register (ADCCFG) to select the input clock source and the divide ratio
used to generate the internal clock, ADCK. This register is also used for selecting sample time and
low-power configuration.
Содержание MC9S08QL4
Страница 4: ...MC9S08QL8 MCU Series Reference Manual Rev 1 4 NXP Semiconductors...
Страница 24: ...Chapter 2 Pins and Connections MC9S08QL8 MCU Series Reference Manual Rev 1 24 NXP Semiconductors...
Страница 36: ...Chapter 3 Modes of Operation MC9S08QL8 MCU Series Reference Manual Rev 1 36 NXP Semiconductors...
Страница 56: ...Chapter 4 Memory MC9S08QL8 MCU Series Reference Manual Rev 1 56 NXP Semiconductors...
Страница 120: ...Analog Comparator S08ACMPVLPV1 MC9S08QL8 MCU Series Reference Manual Rev 1 120 NXP Semiconductors...
Страница 148: ...Analog to Digital Converter S08ADC12V1 MC9S08QL8 MCU Series Reference Manual Rev 1 148 NXP Semiconductors...
Страница 162: ...Internal Clock Source S08ICSV3 MC9S08QL8 MCU Series Reference Manual Rev 0 162 NXP Semiconductors...
Страница 172: ...Modulo Timer S08MTIMV1 MC9S08QL8 MCU Series Reference Manual Rev 1 172 NXP Semiconductors...
Страница 200: ...Serial Communications Interface S08SCIV4 MC9S08QL8 MCU Series Reference Manual Rev 1 200 NXP Semiconductors...
Страница 224: ...Timer Pulse Width Modulator S08TPMV3 MC9S08QL8 MCU Series Reference Manual Rev 1 224 NXP Semiconductors...
Страница 238: ...Development Support MC9S08QL8 MCU Series Reference Manual Rev 1 238 NXP Semiconductors...
Страница 239: ......