Compute Operation is an execution or compute-only mode of operation that keeps the
CPU enabled with full access to the SRAM and Flash read port, but places all other bus
masters and bus slaves into their stop mode. Compute Operation can be enabled in Run
mode, HSRUN mode, or VLPR mode.
NOTE
Do not enter any stop mode without first exiting Compute
Operation.
Because Compute Operation reuses the stop mode logic (including the staged entry with
bus masters disabled before bus slaves), any bus master or bus slave that can remain
functional in stop mode also remains functional in Compute Operation, including
generation of asynchronous interrupts and DMA requests. When enabling Compute
Operation in Run mode, module functionality for bus masters and slaves is the equivalent
of STOP mode. When enabling Compute Operation in VLPR mode, module functionality
for bus masters and slaves is the equivalent of VLPS mode. SCG, PMC, SRAM and
Flash read port are not affected by Compute Operation, although the Flash register
interface is disabled.
During Compute Operation, the AIPS peripheral space is disabled and attempted accesses
generate bus errors. The private peripheral bus (PPB) remains accessible during Compute
Operation, including the MCM, System Control Space (SCS) (for NVIC), and SysTick.
Although access to the GPIO registers is supported, the GPIO port data input registers do
not return valid data since clocks are disabled to the Port Control and Interrupt modules.
By writing to the GPIO port data output registers, it is possible to control those GPIO
ports that are configured as output pins.
Compute Operation is controlled by the CPO register in the MCM, which is only
accessible to the CPU. Setting or clearing the CPOREQ bit in the MCM initiates entry or
exit into Compute Operation. Compute Operation can also be configured to exit
automatically on detection of an interrupt, which is required in order to service most
interrupts. Only the core system interrupts (exceptions, including NMI and SysTick) and
any edge sensitive interrupts can be serviced without exiting Compute Operation.
When entering Compute Operation, the CPOACK status bit indicates when entry has
completed. When exiting Compute Operation in Run mode, the CPOACK status bit
negates immediately. When exiting Compute Operation in VLPR mode, the exit is
delayed to allow the PMC to handle the change in power consumption. This delay means
the CPOACK bit is polled to determine when the AIPS peripheral space can be accessed
without generating a bus error.
Power Modes Description
Kinetis KE1xF Sub-Family Reference Manual, Rev. 4, 06/2019
650
NXP Semiconductors
Содержание KE1xF Series
Страница 2: ...Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 2 NXP Semiconductors...
Страница 60: ...SysTick Clock Configuration Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 60 NXP Semiconductors...
Страница 114: ...Initialization application information Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 114 NXP Semiconductors...
Страница 138: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 138 NXP Semiconductors...
Страница 320: ...Private Peripheral Bus PPB memory map Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 320 NXP Semiconductors...
Страница 342: ...Functional Description Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 342 NXP Semiconductors...
Страница 360: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 360 NXP Semiconductors...
Страница 490: ...Interrupts Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 490 NXP Semiconductors...
Страница 550: ...Memory map and register definition Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 550 NXP Semiconductors...
Страница 562: ...Boot Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 562 NXP Semiconductors...
Страница 662: ...Power supply supervisor Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 662 NXP Semiconductors...
Страница 694: ...On chip resource access control mechanism Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 694 NXP Semiconductors...
Страница 706: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 706 NXP Semiconductors...
Страница 724: ...Application Information Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 724 NXP Semiconductors...
Страница 736: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 736 NXP Semiconductors...
Страница 750: ...Debug and Security Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 750 NXP Semiconductors...
Страница 798: ...Functional description Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 798 NXP Semiconductors...
Страница 808: ...Functional description Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 808 NXP Semiconductors...
Страница 866: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 866 NXP Semiconductors...
Страница 1164: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1164 NXP Semiconductors...
Страница 1178: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1178 NXP Semiconductors...
Страница 1380: ...Usage Guide Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1380 NXP Semiconductors...
Страница 1472: ...Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1472 NXP Semiconductors...
Страница 1482: ...Kinetis KE1xF Sub Family Reference Manual Rev 4 06 2019 1482 NXP Semiconductors...