9
Outdoor unit model
Outdoor unit power supply
Breaker size
Minimum circuit ampacity
Maximum rating of overcurrent protective device
Outdoor unit power supply
Outdoor unit power supply earth
Indoor unit-Outdoor unit
*1
Indoor unit earth
*1
Remote controller-Indoor unit
*2
Outdoor unit L1-L2
*3
Indoor unit-Outdoor unit S1-S2
*3
Indoor unit-Outdoor unit S2-S3
*3
Remote controller-Indoor unit
*3
A12
A18
A24
A30
A36
A42
Single, 208/230 V, 60 Hz Single, 208/230 V, 60 Hz Single, 208/230 V, 60 Hz Single, 208/230 V, 60 Hz Single, 208/230 V, 60 Hz Single, 208/230 V, 60 Hz
15A
15A
25A
30A
30A
30A
13A
13A
18A
25A
25A
26A
15A
20A
30A
40A
40A
40A
2
×
Min. AWG 14
2
×
Min. AWG 14
2
×
Min. AWG 12
2
×
Min. AWG 10
2
×
Min. AWG 10
2
×
Min. AWG 10
1
×
Min. AWG 14
1
×
Min. AWG 14
1
×
Min. AWG 12
1
×
Min. AWG 10
1
×
Min. AWG 10
1
×
Min. AWG 10
3
×
AWG 16 (polar)
3
×
AWG 16 (polar)
3
×
AWG 16 (polar)
3
×
AWG 16 (polar)
3
×
AWG 16 (polar)
3
×
AWG 16 (polar)
1
×
Min. AWG 16
1
×
Min. AWG 16
1
×
Min. AWG 16
1
×
Min. AWG 16
1
×
Min. AWG 16
1
×
Min. AWG 16
2
×
AWG 22 (Non-polar) 2
×
AWG 22 (Non-polar) 2
×
AWG 22 (Non-polar) 2
×
AWG 22 (Non-polar) 2
×
AWG 22 (Non-polar) 2
×
AWG 22 (Non-polar)
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
AC 208/230 V
DC 24 V
DC 24 V
DC 24 V
DC 24 V
DC 24 V
DC 24 V
DC 12 V
DC 12 V
DC 12 V
DC 12 V
DC 12 V
DC 12 V
Wir
ing
Wire No
.
×
siz
e
Circuit
rating
6. Electrical work
*1. Max. 50 m, 165 ft
*2. The 10 m, 30 ft wire is attached in the remote controller accessory. Max 1500 ft
*3. The figures are NOT always against the ground.
S3 terminal has DC 24 V against S2 terminal. However between S3 and S1, these terminals are NOT electrically insulataed by the transformer or other device.
Notes: 1. Wiring size must comply with the applicable local and national code.
2. Use copper supply wires.
3. Use wires rated 300V ro more for the power supply cables and the indoor/outdoor unit connecting cables.
4. Install an earth longer than other cables.
6.2. Field electrical wiring
S1
S2
S3
S1
S2
S3
Warning:
In case of A-control wiring, there is high voltage potential on the S3 terminal caused by electrical circuit design that has no electrical insulation between power line
and communication signal line. Therefore, please turn off the main power supply when servicing. And do not touch the S1, S2, S3 terminals when the power is
energized. If isolator should be used between indoor unit and outdoor unit, please use 3-poles type.
208/230V
Single phase
Isolator
3 poles isolator
A-Control
Outdoor Unit
A-Control
Indoor Unit
7.1. Before test run
s
After completing installation and the wiring and piping of the indoor and outdoor
units, check for refrigerant leakage, looseness in the power supply or control
wiring, wrong polarity, and no disconnection of one phase in the supply.
s
Use a 500-volt megohmmeter to check that the resistance between the power
supply terminals and ground is at least 1.0M
Ω
Ω
Ω
Ω
Ω
.
s
Do not carry out this test on the control wiring (low voltage circuit) terminals.
Warning:
Do not use the air conditioner if the insulation resistance is less than 1.0M
Ω
Ω
Ω
Ω
Ω
.
Insulation resistance
After installation or after the power source to the unit has been cut for an extended
period, the insulation resistance will drop below 1 M
Ω
due to refrigerant accumulat-
ing in the compressor. This is not a malfunction. Perform the following procedures.
1. Remove the wires from the compressor and measure the insulation resistance of
the compressor.
2. If the insulation resistance is below 1 M
Ω
, the compressor is faulty or the resist-
ance dropped due the accumulation of refrigerant in the compressor.
3. After connecting the wires to the compressor, the compressor will start to warm
up after power is supplied. After supplying power for the times indicated below,
measure the insulation resistance again.
•
The insulation resistance drops due to accumulation of refrigerant in the com-
pressor. The resistance will rise above 1 M
Ω
after the compressor is warmed
up for two to three hours.
(The time necessary to warm up the compressor varies according to atmos-
pheric conditions and refrigerant accumulation.)
•
To operate the compressor with refrigerant accumulated in the compressor,
the compressor must be warmed up at least 12 hours to prevent breakdown.
4. If the insulation resistance rises above 1 M
Ω
, the compressor is not faulty.
Caution:
•
The compressor will not operate unless the power supply phase connection
is correct.
• Turn on the power at least 12 hours before starting operation.
- Starting operation immediately after turning on the main power switch can result in
severe damage to internal parts. Keep the power switch turned on during the op-
erational season.
s
The followings must be checked as well.
• The outdoor unit is not faulty. LED1 and LED2 on the control board of the outdoor
unit flash when the outdoor unit is faulty.
• Both the gas and liquid stop valves are completely open.
• A protective sheet covers the surface of the DIP switch panel on the control board of
the outdoor unit. Remove the protective sheet to operate the DIP switches easily.
• Make sure that the all of the SW5 DIP switches for function changes on the control
board of the outdoor unit are set to OFF. If all of the SW5 switches are not set to
OFF, record the settings and then set all of the switches to OFF. Begin recovering
the refrigerant. After moving the unit to a new location and completing the test run,
set the SW5 switches to the previously recorded settings.
7. Test run
BG79U896H02_en
06.5.31, 14:31
9