Page 16-19
With Y(s) = L{y(t)}, and L{d
2
y/dt
2
} = s
2
⋅
Y(s) - s
⋅
y
o
– y
1
, where y
o
= h(0) and y
1
= h’(0), the transformed equation is
s
2
⋅
Y(s) – s
⋅
y
o
– y
1
+ 2
⋅
Y(s) = 3/(s
2
+9).
Use the calculator to solve for Y(s), by writing:
‘X^2*Y-X*y0-y1+2*Y=3/(X^2+9)’
`
‘Y’ ISOL
The result is
‘Y=((X^2+9)*y1+(y0*X^3+9*y0*X+3))/(X^4+11*X^2+18)’.
To find the solution to the ODE, y(t), we need to use the inverse Laplace
transform, as follows:
OBJ
ƒ ƒ
Isolates right-hand side of last expression
ILAP
μ
Obtains the inverse Laplace transform
The result is
i.e.,
y(t) = -(1/7) sin 3x + y
o
cos
√
2x + (
√
2 (7y
1
+3)/14) sin
√
2x.
Check what the solution to the ODE would be if you use the function LDEC:
‘SIN(3*X)’
`
‘X^2+2’
`
LDEC
μ
The result is:
i.e., the same as before with cC0 = y0 and cC1 = y1.
Note
: ‘SIN(3*X)’
`
LAP
μ
produces ‘3/(X^2+9)’, i.e.,
L{sin 3t}=3/(s
2
+9).
Содержание 50G
Страница 1: ...HP g graphing calculator user s guide H Edition 1 HP part number F2229AA 90006 ...
Страница 130: ...Page 2 70 The CMDS CoMmanDS menu activated within the Equation Writer i e O L CMDS ...
Страница 177: ...Page 4 10 Function DROITE is found in the command catalog N Using EVAL ANS 1 simplifies the result to ...
Страница 206: ...Page 5 29 LIN LNCOLLECT POWEREXPAND SIMPLIFY ...
Страница 257: ...Page 7 20 ...
Страница 383: ...Page 11 56 Function KER Function MKISOM ...
Страница 715: ...Page 21 68 Whereas using RPL there is no problem when loading this program in algebraic mode ...
Страница 858: ...Page L 5 ...