Rev. 1.71
18
April 11, 2017
Rev. 1.71
19
April 11, 2017
HT66F002/HT66F0025/HT66F003/HT66F004
Cost-Effective A/D Flash MCU with EEPROM
HT66F002/HT66F0025/HT66F003/HT66F004
Cost-Effective A/D Flash MCU with EEPROM
System Architecture
A key factor in the high-performance features of the Holtek range of microcontrollers is attributed
to their internal system architecture. The device takes advantage of the usual features found within
RISC microcontrollers providing increased speed of operation and Periodic performance. The
pipelining scheme is implemented in such a way that instruction fetching and instruction execution
are overlapped, hence instructions are effectively executed in one cycle, with the exception of branch
or call instructions. An 8-bit wide ALU is used in practically all instruction set operations, which
carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions,
etc. The internal data path is simplified by moving data through the Accumulator and the ALU.
Certain internal registers are implemented in the Data Memory and can be directly or indirectly
addressed. The simple addressing methods of these registers along with additional architectural
features ensure that a minimum of external components is required to provide a functional I/O and
A/D control system with maximum reliability and flexibility. This makes these devices suitable for
low-cost, high-volume production for controller applications
Clocking and Pipelining
The main system clock, derived from either a HIRC or LIRC oscillator is subdivided into four
internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at the
beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4
clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms
one instruction cycle. Although the fetching and execution of instructions takes place in consecutive
instruction cycles, the pipelining structure of the microcontroller ensures that instructions are
effectively executed in one instruction cycle. The exception to this are instructions where the
contents of the Program Counter are changed, such as subroutine calls or jumps, in which case the
instruction will take one more instruction cycle to execute.
System Clock and Pipelining