The Fourier components are calculated using single-cycle Fourier algorithm. This Fourier algorithm always uses
the most recent 24 samples from the 2-cycle buffer.
Most protection algorithms use the fundamental component. In this case, the Fourier algorithm extracts the power
frequency fundamental component from the signal to produce its magnitude and phase angle. This can be
represented in either polar format or rectangular format, depending on the functions and algorithms using it.
The Fourier function acts as a filter, with zero gain at DC and unity gain at the fundamental, but with good
harmonic rejection for all harmonic frequencies up to the nyquist frequency. Frequencies beyond this nyquist
frequency are known as alias frequencies, which are introduced when the sampling frequency becomes less than
twice the frequency component being sampled. However, the Alias frequencies are significantly attenuated by an
anti-aliasing filter (low pass filter), which acts on the analog signals before they are sampled. The ideal cut-off point
of an anti-aliasing low pass filter would be set at:
(samples per cycle)
´
(fundamental frequency)/2
At 24 samples per cycle, this would be nominally 600 Hz for a 50 Hz system, or 720 Hz for a 60 Hz system.
The following figure shows the nominal frequency response of the anti-alias filter and the Fourier filter for a 24-
sample single cycle fourier algorithm acting on the fundamental component:
Ideal anti-alias filter response
Real anti-alias filter
response
2 3 4
1
0.2
0.4
0.6
0.8
5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23 24
1
50 Hz
600 Hz
1200 Hz
V00301
Fourier response without
anti-alias filter
Fourier response with
anti-alias filter
Alias frequency
Figure 32: Frequency Response (indicative only)
5.5
PROGRAMMABLE SCHEME LOGIC
The purpose of the programmable scheme logic (PSL) is to allow you to configure your own protection schemes to
suit your particular application. This is done with programmable logic gates and delay timers. To allow greater
flexibility, different PSL is allowed for each of the four setting groups.
The input to the PSL is any combination of the status of the digital input signals from the opto-isolators on the
input board, the outputs of the protection elements such as protection starts and trips, and the outputs of the fixed
protection scheme logic (FSL). The fixed scheme logic provides the standard protection schemes. The PSL consists
of software logic gates and timers. The logic gates can be programmed to perform a range of different logic
functions and can accept any number of inputs. The timers are used either to create a programmable delay,
and/or to condition the logic outputs, such as to create a pulse of fixed duration on the output regardless of the
length of the pulse on the input. The outputs of the PSL are the LEDs on the front panel of the relay and the output
contacts at the rear.
The execution of the PSL logic is event driven. The logic is processed whenever any of its inputs change, for
example as a result of a change in one of the digital input signals or a trip output from a protection element. Also,
only the part of the PSL logic that is affected by the particular input change that has occurred is processed. This
reduces the amount of processing time that is used by the PSL. The protection & control software updates the logic
delay timers and checks for a change in the PSL input signals every time it runs.
The PSL can be configured to create very complex schemes. Because of this PSL desing is achieved by means of a
PC support package called the PSL Editor. This is available as part of the settings application software MiCOm S1
Agile, or as a standalone software module.
Chapter 4 - Software Design
P64x
72
P64x-TM-EN-1.3
Содержание P642
Страница 2: ......
Страница 18: ...Contents P64x xvi P64x TM EN 1 3 ...
Страница 24: ...Table of Figures P64x xxii P64x TM EN 1 3 ...
Страница 25: ...CHAPTER 1 INTRODUCTION ...
Страница 26: ...Chapter 1 Introduction P64x 2 P64x TM EN 1 3 ...
Страница 36: ...Chapter 1 Introduction P64x 12 P64x TM EN 1 3 ...
Страница 37: ...CHAPTER 2 SAFETY INFORMATION ...
Страница 38: ...Chapter 2 Safety Information P64x 14 P64x TM EN 1 3 ...
Страница 50: ...Chapter 2 Safety Information P64x 26 P64x TM EN 1 3 ...
Страница 51: ...CHAPTER 3 HARDWARE DESIGN ...
Страница 52: ...Chapter 3 Hardware Design P64x 28 P64x TM EN 1 3 ...
Страница 87: ...CHAPTER 4 SOFTWARE DESIGN ...
Страница 88: ...Chapter 4 Software Design P64x 64 P64x TM EN 1 3 ...
Страница 98: ...Chapter 4 Software Design P64x 74 P64x TM EN 1 3 ...
Страница 99: ...CHAPTER 5 CONFIGURATION ...
Страница 100: ...Chapter 5 Configuration P64x 76 P64x TM EN 1 3 ...
Страница 121: ...CHAPTER 6 TRANSFORMER DIFFERENTIAL PROTECTION ...
Страница 122: ...Chapter 6 Transformer Differential Protection P64x 98 P64x TM EN 1 3 ...
Страница 165: ...CHAPTER 7 TRANSFORMER CONDITION MONITORING ...
Страница 166: ...Chapter 7 Transformer Condition Monitoring P64x 142 P64x TM EN 1 3 ...
Страница 189: ...CHAPTER 8 RESTRICTED EARTH FAULT PROTECTION ...
Страница 190: ...Chapter 8 Restricted Earth Fault Protection P64x 166 P64x TM EN 1 3 ...
Страница 215: ...CHAPTER 9 CURRENT PROTECTION FUNCTIONS ...
Страница 216: ...Chapter 9 Current Protection Functions P64x 192 P64x TM EN 1 3 ...
Страница 249: ...CHAPTER 10 CB FAIL PROTECTION ...
Страница 250: ...Chapter 10 CB Fail Protection P64x 226 P64x TM EN 1 3 ...
Страница 259: ...CHAPTER 11 VOLTAGE PROTECTION FUNCTIONS ...
Страница 260: ...Chapter 11 Voltage Protection Functions P64x 236 P64x TM EN 1 3 ...
Страница 274: ...Chapter 11 Voltage Protection Functions P64x 250 P64x TM EN 1 3 ...
Страница 275: ...CHAPTER 12 FREQUENCY PROTECTION FUNCTIONS ...
Страница 276: ...Chapter 12 Frequency Protection Functions P64x 252 P64x TM EN 1 3 ...
Страница 286: ...Chapter 12 Frequency Protection Functions P64x 262 P64x TM EN 1 3 ...
Страница 287: ...CHAPTER 13 MONITORING AND CONTROL ...
Страница 288: ...Chapter 13 Monitoring and Control P64x 264 P64x TM EN 1 3 ...
Страница 306: ...Chapter 13 Monitoring and Control P64x 282 P64x TM EN 1 3 ...
Страница 307: ...CHAPTER 14 SUPERVISION ...
Страница 308: ...Chapter 14 Supervision P64x 284 P64x TM EN 1 3 ...
Страница 322: ...Chapter 14 Supervision P64x 298 P64x TM EN 1 3 ...
Страница 323: ...CHAPTER 15 DIGITAL I O AND PSL CONFIGURATION ...
Страница 324: ...Chapter 15 Digital I O and PSL Configuration P64x 300 P64x TM EN 1 3 ...
Страница 336: ...Chapter 15 Digital I O and PSL Configuration P64x 312 P64x TM EN 1 3 ...
Страница 337: ...CHAPTER 16 COMMUNICATIONS ...
Страница 338: ...Chapter 16 Communications P64x 314 P64x TM EN 1 3 ...
Страница 397: ...CHAPTER 17 CYBER SECURITY ...
Страница 398: ...Chapter 17 Cyber Security P64x 374 P64x TM EN 1 3 ...
Страница 415: ...CHAPTER 18 INSTALLATION ...
Страница 416: ...Chapter 18 Installation P64x 392 P64x TM EN 1 3 ...
Страница 429: ...5 2 CASE DIMENSIONS 60TE E01409 Figure 167 60TE case dimensions P64x Chapter 18 Installation P64x TM EN 1 3 405 ...
Страница 431: ...CHAPTER 19 COMMISSIONING INSTRUCTIONS ...
Страница 432: ...Chapter 19 Commissioning Instructions P64x 408 P64x TM EN 1 3 ...
Страница 454: ...V01505 Figure 173 Harmonic Restraint Test Plane Chapter 19 Commissioning Instructions P64x 430 P64x TM EN 1 3 ...
Страница 460: ...Chapter 19 Commissioning Instructions P64x 436 P64x TM EN 1 3 ...
Страница 461: ...CHAPTER 20 MAINTENANCE AND TROUBLESHOOTING ...
Страница 462: ...Chapter 20 Maintenance and Troubleshooting P64x 438 P64x TM EN 1 3 ...
Страница 477: ...CHAPTER 21 TECHNICAL SPECIFICATIONS ...
Страница 478: ...Chapter 21 Technical Specifications P64x 454 P64x TM EN 1 3 ...
Страница 507: ...APPENDIX A ORDERING OPTIONS ...
Страница 508: ...Appendix A Ordering Options P64x P64x TM EN 1 3 ...
Страница 512: ...Appendix A Ordering Options P64x A4 P64x TM EN 1 3 ...
Страница 513: ...APPENDIX B SETTINGS AND SIGNALS ...
Страница 515: ...APPENDIX C WIRING DIAGRAMS ...
Страница 516: ...Appendix C Wiring Diagrams P64x P64x TM EN 1 3 ...
Страница 590: ......
Страница 591: ......