![GE P642 Скачать руководство пользователя страница 224](http://html.mh-extra.com/html/ge/p642/p642_technical-manual_131882224.webp)
Note:
In the logic diagrams and descriptive text, it is usually sufficient to show only the first stage, as the design principles for
subsequent stages are usually the same (or at least very similar). Where there are differences between the functionality of
different stages, this is clearly indicated.
2.2.1
TIMER HOLD FACILITY
The Timer Hold facility is available for stages with IDMT functionality , and is controlled by the timer reset settings
for the relevant stages (e.g. I>1 tReset, I>2 tReset ). These cells are not visible for the IEEE/US curves if an inverse
time reset characteristic has been selected, because in this case the reset time is determined by the time dial
setting (TDS).
This feature may be useful in certain applications, such as when grading with upstream electromechanical
overcurrent relays, which have inherent reset time delays. If you set the hold timer to a value other than zero, the
resetting of the protection element timers will be delayed for this period. This allows the element to behave in a
similar way to an electromechanical relay. If you set the hold timer to zero, the overcurrent timer for that stage will
reset instantaneously as soon as the current falls below a specified percentage of the current setting (typically
95%).
Another situation where the timer hold facility may be used to reduce fault clearance times is for intermittent
faults. An example of this may occur in a plastic insulated cable. In this application it is possible that the fault
energy melts and reseals the cable insulation, thereby extinguishing the fault. This process repeats to give a
succession of fault current pulses, each of increasing duration with reducing intervals between the pulses, until the
fault becomes permanent.
When the reset time is instantaneous, the device will repeatedly reset and not be able to trip until the fault
becomes permanent. By using the Timer Hold facility the device will integrate the fault current pulses, thereby
reducing fault clearance time.
2.3
MAGNETISING INRUSH RESTRAINT
Whenever there is an abrupt change of magnetising voltage (e.g. when a transformer is initially connected to a
source of AC voltage), there may be a substantial surge of current through the primary winding called inrush
current.
In an ideal transformer, the magnetizing current would rise to approximately twice its normal peak value as well,
generating the necessary MMF to create this higher-than-normal flux. However, most transformers are not
designed with enough of a margin between normal flux peaks and the saturation limits to avoid saturating in a
condition like this, and so the core will almost certainly saturate during this first half-cycle of voltage. During
saturation, disproportionate amounts of MMF are needed to generate magnetic flux. This means that winding
current, which creates the MMF to cause flux in the core, could rise to a value way in excess of its steady state
peak value. Furthermore, if the transformer happens to have some residual magnetism in its core at the moment
of connection to the source, the problem could be further exacerbated.
The following figure shows the magnetizing inrush phenomenon:
Chapter 9 - Current Protection Functions
P64x
200
P64x-TM-EN-1.3
Содержание P642
Страница 2: ......
Страница 18: ...Contents P64x xvi P64x TM EN 1 3 ...
Страница 24: ...Table of Figures P64x xxii P64x TM EN 1 3 ...
Страница 25: ...CHAPTER 1 INTRODUCTION ...
Страница 26: ...Chapter 1 Introduction P64x 2 P64x TM EN 1 3 ...
Страница 36: ...Chapter 1 Introduction P64x 12 P64x TM EN 1 3 ...
Страница 37: ...CHAPTER 2 SAFETY INFORMATION ...
Страница 38: ...Chapter 2 Safety Information P64x 14 P64x TM EN 1 3 ...
Страница 50: ...Chapter 2 Safety Information P64x 26 P64x TM EN 1 3 ...
Страница 51: ...CHAPTER 3 HARDWARE DESIGN ...
Страница 52: ...Chapter 3 Hardware Design P64x 28 P64x TM EN 1 3 ...
Страница 87: ...CHAPTER 4 SOFTWARE DESIGN ...
Страница 88: ...Chapter 4 Software Design P64x 64 P64x TM EN 1 3 ...
Страница 98: ...Chapter 4 Software Design P64x 74 P64x TM EN 1 3 ...
Страница 99: ...CHAPTER 5 CONFIGURATION ...
Страница 100: ...Chapter 5 Configuration P64x 76 P64x TM EN 1 3 ...
Страница 121: ...CHAPTER 6 TRANSFORMER DIFFERENTIAL PROTECTION ...
Страница 122: ...Chapter 6 Transformer Differential Protection P64x 98 P64x TM EN 1 3 ...
Страница 165: ...CHAPTER 7 TRANSFORMER CONDITION MONITORING ...
Страница 166: ...Chapter 7 Transformer Condition Monitoring P64x 142 P64x TM EN 1 3 ...
Страница 189: ...CHAPTER 8 RESTRICTED EARTH FAULT PROTECTION ...
Страница 190: ...Chapter 8 Restricted Earth Fault Protection P64x 166 P64x TM EN 1 3 ...
Страница 215: ...CHAPTER 9 CURRENT PROTECTION FUNCTIONS ...
Страница 216: ...Chapter 9 Current Protection Functions P64x 192 P64x TM EN 1 3 ...
Страница 249: ...CHAPTER 10 CB FAIL PROTECTION ...
Страница 250: ...Chapter 10 CB Fail Protection P64x 226 P64x TM EN 1 3 ...
Страница 259: ...CHAPTER 11 VOLTAGE PROTECTION FUNCTIONS ...
Страница 260: ...Chapter 11 Voltage Protection Functions P64x 236 P64x TM EN 1 3 ...
Страница 274: ...Chapter 11 Voltage Protection Functions P64x 250 P64x TM EN 1 3 ...
Страница 275: ...CHAPTER 12 FREQUENCY PROTECTION FUNCTIONS ...
Страница 276: ...Chapter 12 Frequency Protection Functions P64x 252 P64x TM EN 1 3 ...
Страница 286: ...Chapter 12 Frequency Protection Functions P64x 262 P64x TM EN 1 3 ...
Страница 287: ...CHAPTER 13 MONITORING AND CONTROL ...
Страница 288: ...Chapter 13 Monitoring and Control P64x 264 P64x TM EN 1 3 ...
Страница 306: ...Chapter 13 Monitoring and Control P64x 282 P64x TM EN 1 3 ...
Страница 307: ...CHAPTER 14 SUPERVISION ...
Страница 308: ...Chapter 14 Supervision P64x 284 P64x TM EN 1 3 ...
Страница 322: ...Chapter 14 Supervision P64x 298 P64x TM EN 1 3 ...
Страница 323: ...CHAPTER 15 DIGITAL I O AND PSL CONFIGURATION ...
Страница 324: ...Chapter 15 Digital I O and PSL Configuration P64x 300 P64x TM EN 1 3 ...
Страница 336: ...Chapter 15 Digital I O and PSL Configuration P64x 312 P64x TM EN 1 3 ...
Страница 337: ...CHAPTER 16 COMMUNICATIONS ...
Страница 338: ...Chapter 16 Communications P64x 314 P64x TM EN 1 3 ...
Страница 397: ...CHAPTER 17 CYBER SECURITY ...
Страница 398: ...Chapter 17 Cyber Security P64x 374 P64x TM EN 1 3 ...
Страница 415: ...CHAPTER 18 INSTALLATION ...
Страница 416: ...Chapter 18 Installation P64x 392 P64x TM EN 1 3 ...
Страница 429: ...5 2 CASE DIMENSIONS 60TE E01409 Figure 167 60TE case dimensions P64x Chapter 18 Installation P64x TM EN 1 3 405 ...
Страница 431: ...CHAPTER 19 COMMISSIONING INSTRUCTIONS ...
Страница 432: ...Chapter 19 Commissioning Instructions P64x 408 P64x TM EN 1 3 ...
Страница 454: ...V01505 Figure 173 Harmonic Restraint Test Plane Chapter 19 Commissioning Instructions P64x 430 P64x TM EN 1 3 ...
Страница 460: ...Chapter 19 Commissioning Instructions P64x 436 P64x TM EN 1 3 ...
Страница 461: ...CHAPTER 20 MAINTENANCE AND TROUBLESHOOTING ...
Страница 462: ...Chapter 20 Maintenance and Troubleshooting P64x 438 P64x TM EN 1 3 ...
Страница 477: ...CHAPTER 21 TECHNICAL SPECIFICATIONS ...
Страница 478: ...Chapter 21 Technical Specifications P64x 454 P64x TM EN 1 3 ...
Страница 507: ...APPENDIX A ORDERING OPTIONS ...
Страница 508: ...Appendix A Ordering Options P64x P64x TM EN 1 3 ...
Страница 512: ...Appendix A Ordering Options P64x A4 P64x TM EN 1 3 ...
Страница 513: ...APPENDIX B SETTINGS AND SIGNALS ...
Страница 515: ...APPENDIX C WIRING DIAGRAMS ...
Страница 516: ...Appendix C Wiring Diagrams P64x P64x TM EN 1 3 ...
Страница 590: ......
Страница 591: ......