S1C63358 TECHNICAL MANUAL
EPSON
117
CHAPTER 5: SUMMARY OF NOTES
(4) When the OSC3 oscillation clock is selected for the clock source, it is necessary to turn the OSC3
oscillation ON, prior to using the programmable timer. However the OSC3 oscillation circuit requires
a time interval of several msec to several 10 msec from turning the circuit ON until the oscillation
stabilizes. Therefore, allow an adequate interval from turning the OSC3 oscillation circuit ON to
starting the programmable timer. Refer to Section 4.4, "Oscillation Circuit", for the control and notes of
the OSC3 oscillation circuit.
At initial reset, the OSC3 oscillation circuit is set in the OFF state.
(5) For the reason below, pay attention to the reload data write timing when changing the interval of the
programmable timer interrupts while the programmable timer is running.
The programmable timer counts down at the falling edge of the input clock and at the same time it
generates an interrupt if the counter underflows. Then it starts loading the reload data to the counter
and the counter data is determined at the next rising edge of the input clock (period shown in as
➀
in
the figure).
Input clock
Counter data
(continuous mode)
(Reload data = 25H)
03H
02H
01H
00H
25H
24H
Counter data is determined by reloading.
Underflow (interrupt is generated)
➀
Fig. 5.2.2 Reload timing for programmable timer
To avoid improper reloading, do not rewrite the reload data after an interrupt occurs until the counter
data is determined including the reloading period
➀
. Be especially careful when using the OSC1 (low-
speed clock) as the clock source of the programmable timer and the CPU is operating with the OSC3
(high-speed clock).
Serial interface
(1) Perform data writing/reading to the data registers SD0–SD7 only while the serial interface is not
running (i.e., the synchronous clock is neither being input or output).
(2) As a trigger condition, it is required that data writing or reading on data registers SD0–SD7 be
performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated
through data writing/reading on data registers SD0–SD7.) In addition, be sure to enable the serial
interface with the ESIF register before setting the trigger.
Supply trigger only once every time the serial interface is placed in the RUN state. Refrain from
performing trigger input multiple times, as leads to malfunctioning. Moreover, when the synchronous
clock SCLK is external clock, start to input the external clock after the trigger.
(3) Setting of the input/output permutation (MSB first/LSB first) with the SDP register should be done
before setting data to SD0–SD7.
(4) Be aware that the maximum clock frequency for the serial interface is limited to 1 MHz when OSC3 is
used as the clock source of the programmable timer or in the slave mode.
Buzzer output circuit
Since it generates a buzzer signal that is out of synchronization with the BZON register, hazards may at
times be produced when the signal goes ON/OFF due to the setting of the BZON register.
SVD circuit
(1) To obtain a stable detection result, the SVD circuit must be ON for at least l00 µsec. So, to obtain the
SVD detection result, follow the programming sequence below.
1. Set SVDON to "1"
2. Maintain for 100 µsec minimum
3. Set SVDON to "0"
4. Read SVDDT
(2) The SVD circuit should normally be turned OFF because SVD operation increase current consump-
tion.
Содержание S1C63358
Страница 1: ...Technical Manual CMOS 4 BIT SINGLE CHIP MICROCOMPUTER S1C63358 Technical Hardware S1C63358 MF1022 04 ...
Страница 4: ......
Страница 6: ......