background image

AUBER INSTRUMENTS

WWW.AUBERINS.COM

2011.02

P2/8

3.3 Control output connection

The SSR control output of the controller SYL-2352 provides a 12V DC signal 
that can control up to 5 SSRs in parallel. The relay output of the controller 
SYL-2342 can be used to turn on a contactor or a solenoid valve. It can drive 
a small heater directly if the heater draws less than 10 Ampere when 
connected to 120V AC power source. For applications needing two control 
outputs, such as one for heating and another for cooling, relays AL1 or AL2 
can be used for the second output with on/off control mode. Please see 
Figure 11 for details. 
3.3.1 Connecting the load through SSR (for SYL-2352)
Connect terminal 7 to the positive input and terminal 8 to the negative input of 
the SSR. See Figure 8 and 9 for details.
3.3.2 Connecting the load through a contactor (for SYL-2342)
Assuming the controller is powered by 120V AC and the contactor has a 120V 
AC coil, jump a wire between terminals 8 and 9. Connect terminal 7 to one 
lead of the coil and terminal 10 to the other lead of the coil. Please see Figure
7 for example. 
3.3.3. Connecting the heater (or cooler) directly from the internal relay
Assuming the controller and the load (heater or cooler) are powered by the 
same voltage. Jump a wire from terminal 9 to 8. Connect terminal 7 to the one 
lead of the load and terminal 10 to the other lead of the load. Please see 
Figure 6 and 11  for details.

3.4 For first time users without prior experience with PID controllers, the 
following notes may prevent you from making common mistakes.

3.4.1 Power to the heater does not flow through terminal 9 and 10 of the 
controller. The controller consumes less than 2 watts of power. It only 
provides a control signal to the relay. Therefore, wires in the 18 to 26 gauge 
range should be used for providing power to terminals 9 and 10. Thicker wires
may be more difficult to install.
3.4.2 The control relay outputs (for SYL-2342),  -AL1 and AL2, are “dry” single 
pole switches. They do not provide power by themselves. Please see Figure 
6, 7 and 11 for how they are wired when providing a 120V output (or when 
output voltage is the same as the power source for the controller). If the load 
of the relay requires a different voltage than that for the controller, another 
power source will be needed. See Figure 10 for examples.
3.4.3 SSR output power does not come from the input of the SSR. The output 
of the SSR is a single pole switch between terminals 1 and 2 of the SSR. The 
input of the SSR is for control, or triggering the SSR. (Please note we are 
talking about the SSR itself, not the SSR control output of the controller). 
When switching a North American 240V AC power, the heater will be live 
even when the SSR is off. Users should install a double pole mechanical 
switch to the power input.
3.4.4. For all controller models listed in this manual, the power is controlled by 
regulating the duration of on time for a fixed period of time. It is not controlled 
by regulating amplitude of the voltage or current. This is often referred as time 
proportional control. e.g. If the cycle rate is set for 100 seconds, a 60% output 
means controller will switch on the power for 60 seconds and off for 40 
seconds (60/100=60%). Almost all high power control systems use time 
proportional control because amplitude proportional control is too expensive 
and inefficient.

4. Front Panel and Operation

 PV display: Indicates the sensor read out, or process value (PV). 

 SV display: Indicates the set value (SV) or output value (%). 

 AL1 indicator: It lights up when AL1 relay is on.

 AL2 indicator: It lights up when AL2 relay is on.

A-M indicator: The light indicates that the controller is in manual mode. For 

the controllers with the Ramp/Soak option, this light indicates that the 
program is running. 

Output indicator: It is synchronized with control output (terminal 7 and 8), 

and the power to the load.  When it is on, the heater (or cooler) is 
powered.

 SET key: When it is pressed momentarily, the controller will switch the 

lower (SV) display between set value and percentage of output. When 
pressed and held for two seconds will put the controller into parameter
setting mode.

 Automatic/Manual function key (A/M) /Data shift key  

 Decrement key 

: Decreases numeric value of the setting value. 

 Increment key 

: Increases numeric value of the setting value. 

4.1 Display Status 

Figure 2. Front panel

Display mode 1

: When the power is turned on,  the upper display window 

shows the measured value (PV) and the lower window shows the four-digit set
value (SV).

Display mode 2

: Press the SET key to change the display status into mode 

2. The upper display window shows the measured value (PV) and the lower 
windows shows the output value. This picture shows the output percentage is 
60% when in Automatic (PID) control mode. If parameter A-M=1 (see table 2),  
pressing the A/M key will switch the controller between PID and Manual 
control mode with the output unchanged. -This bumpless transfer allows the 
controller to be switched between manual and automatic mode without the 
output suddenly 'bumping' to a different value. 

Display mode 3

: Press the SET key for 2 seconds to enter the display mode 

3. This mode allows users to change the system parameters.

4.2 Basic Operation 

4.2.1 Changing set value (SV) 

Press the 

 or 

 key once, and then release it. The decimal point on the 

lower right corner will start to flash. Press the 

 or

 key to change SV until 

the desired value is displayed. If the change of SV is large, press the A/M key 
to move the flashing decimal point to the desired digit that needs to be 
changed. Then press the 

 or

 key to start changing SV from that digit. 

The decimal point will stop flashing after no key is pressed for 3 seconds. The 
changed SV will be automatically registered without pressing the SET key.

Figure 3. Display modes

3
4
5
6

1

2

7

8

9

10

8888

8888

Power on

8 0 0

.

0

8 0 0

.

5

Display mode 1

8 0 0

.

0

A 6  0

8 0 0

.

0

“M 60” means 

output value=60%

on manual mode

Display mode 2

1 0 0  5

ALM1 (high limit alarm)=1005

Display mode 3

2S

+

Next parameter

M   6 0

A L M1

SET

SET

SET

A/M

SET

A/M

“A 60” means 

output value=60%

on Automatic mode

PV

SV

PV

PV

Содержание SYL-2342

Страница 1: ...ontrol output Ramp soak option SYL 2342 Relay contact output No SYL 2352 SSR control output No SYL 2342P Relay contact output Yes SYL 2352P SSR control output Yes All the models listed in table 1 are 1 16 DIN size with dual alarm outputs Table 1 Controller models 3 Terminal Wiring Figure 1 Wiring diagram 3 1 Sensor connection Please refer to table 3 for the input sensor type Sn setting codes The i...

Страница 2: ...t is not controlled by regulating amplitude of the voltage or current This is often referred as time proportional control e g If the cycle rate is set for 100 seconds a 60 output means controller will switch on the power for 60 seconds and off for 40 seconds 60 100 60 Almost all high power control systems use time proportional control because amplitude proportional control is too expensive and ine...

Страница 3: ...120 t Cycle time 2 125 2 for SSR 20 for relay See 4 6 Sn Input type 0 37 0 K type TC See 4 7 dP Decimal point position 0 3 0 See 4 8 P SL Display low limit 1999 9999 C or F 100 P SH Display high limit 1999 9999 C or F 2500 Pb Input offset 1999 4000 1999 9999 C or F 0 0 See 4 10 OP A Output mode 0 2 0 See 4 11 OUTL Output low limit 0 110 0 OUTH Output high limit 0 110 100 AL P Alarm output definiti...

Страница 4: ...At 1 or At 2 4 5 Control action explanations 4 5 1 PID Please note that because this controller uses fuzzy logic enhanced PID control software the definition of the control constants P I and d are different than that of the traditional proportional integral and derivative parameters In most cases the fuzzy logic enhanced PID control is very adaptive and may work well without changing the initial P...

Страница 5: ...imum ALM1 Hy 1 and Hy 2 to 9999 ALM2 to 1999 to stop its function 4 14 COOL for Celsius Fahrenheit Heating and Cooling Selection Parameter COOL is used to set the display unit heating or cooling and alarm suppression Its value is determined by the following formula COOL AX1 BX2 CX8 A 0 reverse action control mode for heating control 4 5 3 Manual mode Manual mode allows the user to control the outp...

Страница 6: ...cy within a fraction of a degree The SSR allows the heater to be switched at higher frequency for better stability It also has longer life time than the electromechanical relay A proper heat sink is needed when the SSR switches 8A of current For wiring a 240V heater please see 5 4 A 1 direct action control mode for cooling control B 0 without alarm suppressing when turned on or when set point chan...

Страница 7: ...esis band for heater and cooler to 2 degree 2 COOL 9 Set the controller to cooling mode no alarm suppression Fahrenheit temperature unit display 3 AT 0 Set the controller main output to on off control mode for refrigerator compressor control 4 ALM2 62 Set the low limit alarm to 62 F Heater will be on at 60 F ALM2 Hy and off at 64 F ALM2 Hy 5 SV 67 Refrigerator will be on at 69 F SV Hy and off at 6...

Страница 8: ...e parameter OUTL If this happens when using thermocouple sensor you can short terminal 4 and 5 with a copper wire If the display shows ambient temperature the thermocouple is defective If it still displays orAL check the input setting Sn to make sure it is set to the right thermocouple type If the Sn setting is correct the controller is defective For RTD sensors check the input setting first becau...

Отзывы: