background image

AUBER INSTRUMENTS

2011.02

P5/8

Sn code

Input device

Display range (ºC) Display range (ºF)

0

K (thermocouple)

-50~+1300

-58~2372

1

S(thermocouple)

-50~+1700

-58~3092

2

WRe (5/26) (thermocouple)

0~2300

32~4172

3

T (thermocouple)

-200~350

-328~662

4

E (thermocouple)

0~800

32~1472

5

J (thermocouple)

0~1000

32~1832

6

B (thermocouple)

0~1800

32~3272

7

N (thermocouple)

0~1300

32~2372

20

Cu50 (RTD)

-50~+150

-58~302

21

Pt100 (RTD)

-200~+600

-328~1112

26

0~80

27

0~400

28

0~20mV

29

0~100 mV

30

0~60 mV

31

0~1V

32

0.2~1V

4-20mA (w/ 50

 Resistor)

33

1~5V

4~20mA (w/ 250

 Resistor)

34

0~5V

35

-20~+20mV

36

-100~+100mV

37

-5V~+5V

-1999~+9999 Defined by user

with P-SL and P-SH

4.7 Input selection code for “Sn”

Table 3. Code for Sn and its range.

4.12 Output range limits “OUTL” and “OUTH”

OUTL and OUTH allow you set the output range low and high limit.
OUTL is a useful feature for a system that needs to have a minimum amount 
of power as long as the controller is powered.  e.g. If OUTL=20, the controller 
will maintain a minimum of 20% power output even when input sensor failed.
OUTH can be used when you have an overpowered heater to control a small 
subject. e.g.  If you set the OUTH=50, the 5000 watt heater will be used as 
2500W heater (50%) even when the PID wants to send 100% output.

4.13 Alarm output definition “AL-P”

Parameter “AL-P” may be configured in the range of 0 to 31. It is used to 
define which alarms (“ALM1”, “ALM2”, “Hy-1” and “Hy-2”) is output to AL1 or 
AL2. Its function is determined by the following formula:
AL-P=AX1+BX2+CX4+DX8+EX16
If A=0, then AL2 is activated when Process high alarm occurs;
If A=1, then AL1 is activated when Process high alarm occurs;
If B=0, then AL2 is activated when Process low alarm occurs;
If B=1, then AL1 is activated when Process low alarm occurs;
If C=0, then AL2 is activated when Deviation high alarm occurs;
If C=1, then AL1 is activated when Deviation high alarm occurs;
If D=0, then AL2 is activated when Deviation low alarm occurs;
If D=1, then AL1 is activated when Deviation low alarm occurs;
If E=0, then alarm types, such as “ALM1” and “ALM2” will be displayed 
alternatively in the lower display window when the alarms are on. This makes 
it easier to determine which alarms are on.
If E=1, the alarm will not be displayed in the lower display window (except for 
“orAL”). Generally this setting is used when the alarm output is used for 
control purposes.
For example ,  in order to activate AL1 when a Process high alarm occurs, 
trigger AL2 by a Process low alarm, Deviation high alarm, or Deviation low 
alarm, and not show the alarm type in the lower display window, set A=1, 
B=0, C=0, D=0, and E=1. Parameter “AL-P” should be configured to:
AL-P=1X1+0X2+0X4+0X8+1X16=17 

(this is the factory default setting)

Note: Unlike controllers that can be set to only one alarm type (either 
absolute or deviation but not both at same time), this controller allows both 
alarm types to function simultaneously. If you only want one alarm type to 
function, set the other alarm type parameters to maximum or minimum 
(ALM1, Hy-1 and Hy-2 to 9999, ALM2 to –1999) to stop its function.

4.14 “COOL” for Celsius, Fahrenheit, Heating, and Cooling Selection

Parameter “COOL” is used to set the display unit, heating or cooling, and 
alarm suppression. Its value is determined by the following formula:
COOL=AX1+BX2+CX8
A=0, reverse action control mode for heating control.

4.5.3. Manual mode

Manual mode allows the user to control the output as a percentage of the 

total heater power. It is like a dial on a stove. The output is independent of the 
temperature sensor reading. One application example is controlling the 
strength of boiling during beer brewing. You can use the manual mode to 
control the boiling so that it will not boil over to make a mess. The manual 
mode can be switched from PID mode but not from On/off mode. This 
controller offers a 

bumpless

 switch from the PID to manual mode. If the 

controller outputs 75% of power at PID mode, the controller will stay at 75% 
when it is switched to the manual mode, until it is adjusted manually. See 
Figure 3 for how to switch the display mode. The Manual control is initially 
disabled (A/M=2). 

To activate the manual control, set A/M=0 or 1

.

4.6 Cycle time “t”

It is the time period (in seconds) that the controller uses to calculate its 
output. e.g. When t=2, if the controller decides output should be 10%, the 
heater will be on 0.2 second and off 1.8 seconds for every 2 seconds. Smaller 
t values result in more precision control. For SSR output, t is set at the 
minimum (2 seconds). For relay or contactor output, it should be set longer to 
prevent contacts from wearing out too soon. Normally it is set to 20~ 4 0 
seconds.

4.8 Decimal point setting “dP”

1) In case of thermocouple or RTD input, dP is used to define temperature 
display resolution.
dP=0, temperature display resolution is 1 ºC (ºF).
dP=1, temperature display resolution is 0.1 ºC . The 0.1 degree resolution is 
only available for Celsius display. The temperature will be displayed at the 
resolution of 0.1 ºC for input below 1000 ºC and 1 ºC for input over 1000 ºC. 

2) For linear input devices (voltage, current or resistance input, Sn=26-37)
Table 4. dP parameter setting

4.9 Limiting  the control range, “P-SH” and “P-SL”

1) For temperature sensor input, the “P-SH” and “P-SL” values define the set 
value range. P-SL is the low limit, and P-SH is the high limit.
e.g. Sometimes, you may want to limit the temperature setting range so that 
the operator can’t set a very high temperature by accident. If you set the P-
SL=100 and P-SH =130, operator will only be able to set the temperature 
between 100 and 130.
2) For linear input devices, “P-SH” and “P-SL” are used to define the display 
span. e.g. If the input is 0-5V. P-SL is the value to be displayed at 0V and P-
SH is the value at 5V. 

4.10 Input offset “Pb”

Pb is used to set an input offset to compensate the error produced by the 
sensor or input signal itself. 
For example, if the controller displays 5 ºC when probe is in ice/water mixture, 
setting Pb=-5, will make the controller display 0 ºC.

4.11 Output definition “OP-A”

This parameter is not used for this model. It should not be changed. 

dP Value

0

1

2

3

Display format

0000

000.0

00.00

0.000

WWW.AUBERINS.COM

Содержание SYL-2342

Страница 1: ...ontrol output Ramp soak option SYL 2342 Relay contact output No SYL 2352 SSR control output No SYL 2342P Relay contact output Yes SYL 2352P SSR control output Yes All the models listed in table 1 are 1 16 DIN size with dual alarm outputs Table 1 Controller models 3 Terminal Wiring Figure 1 Wiring diagram 3 1 Sensor connection Please refer to table 3 for the input sensor type Sn setting codes The i...

Страница 2: ...t is not controlled by regulating amplitude of the voltage or current This is often referred as time proportional control e g If the cycle rate is set for 100 seconds a 60 output means controller will switch on the power for 60 seconds and off for 40 seconds 60 100 60 Almost all high power control systems use time proportional control because amplitude proportional control is too expensive and ine...

Страница 3: ...120 t Cycle time 2 125 2 for SSR 20 for relay See 4 6 Sn Input type 0 37 0 K type TC See 4 7 dP Decimal point position 0 3 0 See 4 8 P SL Display low limit 1999 9999 C or F 100 P SH Display high limit 1999 9999 C or F 2500 Pb Input offset 1999 4000 1999 9999 C or F 0 0 See 4 10 OP A Output mode 0 2 0 See 4 11 OUTL Output low limit 0 110 0 OUTH Output high limit 0 110 100 AL P Alarm output definiti...

Страница 4: ...At 1 or At 2 4 5 Control action explanations 4 5 1 PID Please note that because this controller uses fuzzy logic enhanced PID control software the definition of the control constants P I and d are different than that of the traditional proportional integral and derivative parameters In most cases the fuzzy logic enhanced PID control is very adaptive and may work well without changing the initial P...

Страница 5: ...imum ALM1 Hy 1 and Hy 2 to 9999 ALM2 to 1999 to stop its function 4 14 COOL for Celsius Fahrenheit Heating and Cooling Selection Parameter COOL is used to set the display unit heating or cooling and alarm suppression Its value is determined by the following formula COOL AX1 BX2 CX8 A 0 reverse action control mode for heating control 4 5 3 Manual mode Manual mode allows the user to control the outp...

Страница 6: ...cy within a fraction of a degree The SSR allows the heater to be switched at higher frequency for better stability It also has longer life time than the electromechanical relay A proper heat sink is needed when the SSR switches 8A of current For wiring a 240V heater please see 5 4 A 1 direct action control mode for cooling control B 0 without alarm suppressing when turned on or when set point chan...

Страница 7: ...esis band for heater and cooler to 2 degree 2 COOL 9 Set the controller to cooling mode no alarm suppression Fahrenheit temperature unit display 3 AT 0 Set the controller main output to on off control mode for refrigerator compressor control 4 ALM2 62 Set the low limit alarm to 62 F Heater will be on at 60 F ALM2 Hy and off at 64 F ALM2 Hy 5 SV 67 Refrigerator will be on at 69 F SV Hy and off at 6...

Страница 8: ...e parameter OUTL If this happens when using thermocouple sensor you can short terminal 4 and 5 with a copper wire If the display shows ambient temperature the thermocouple is defective If it still displays orAL check the input setting Sn to make sure it is set to the right thermocouple type If the Sn setting is correct the controller is defective For RTD sensors check the input setting first becau...

Отзывы: