
65
Recovery
When removing refrigerant from a system, either for servicing or decommissioning, it is
a recommended good practice that all refrigerants are removed safely.
When transferring refrigerant into cylinders, ensure that only appropriate refrigerant
recovery cylinders are employed. Ensure that the correct number of cylinders for holding
the total system charge is available.
All cylinders to be used are designated for the recovered refrigerant and labelled for
that refrigerant (i.e. special cylinders for the recovery of refrigerant). Cylinders shall be
complete with pressure relief valve and associated shut-off valves in good working order.
Empty recovery cylinders are evacuated and, if possible, cooled before recovery occurs.
The recovery equipment shall be in good working order with a set of instructions concer-
ning the equipment that is at hand and shall be suitable for the recovery of flammable
refrigerants. In addition, a set of calibrated weighing scales shall be available and in good
working order. Hoses shall be complete with leak-free disconnection couplings and in
good condition. Before using the recovery machine, check that it is in satisfactory wor-
king order, has been properly maintained and that any associated electrical components
are sealed to prevent ignition in the event of a refrigerant release. Consult manufacturer
if in doubt.
The recovered refrigerant shall be returned to the refrigerant supplier in the correct re-
covery cylinder, and the relevant Waste Transfer Note arranged. Do not mix refrigerants
in recovery units and especially not in cylinders.
If compressors or compressor oils are to be removed, ensure that they have been eva-
cuated to an acceptable level to make certain that flammable refrigerant does not re
-
main within the lubricant. The evacuation process shall be carried out prior to returning
the compressor to the suppliers. Only electric heating to the compressor body shall be
employed to accelerate this process. When oil is drained from a system, it shall be carried
out safely.
Summary of Contents for PAC Alaska 7
Page 2: ...2 3 4 1 6 7 5 8 1 4 5 2 3...
Page 3: ...4 5 7 2 13 12 3 6 1 15 14 5 4 7 1 2 3 6 8 10 9 11...
Page 153: ...153 UFESA 1 2 3 4 5 6 7 8 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15...
Page 154: ...154 1 2 3 4 5 6 7 8 50 F 250V 3 15...
Page 155: ...155 4 2 2 2 R290 90...
Page 156: ...156 2000 m...
Page 157: ...157 B B TRENDS SL 24 A 60 1...
Page 158: ...158 2 B 1 2 3 4 C CR2025 3V 1...
Page 159: ...159 2 3 A 1 1 4 15 11 10 24 24 11 14 8 6 10 4...
Page 160: ...160 1 2 1 C 6 7 15 C 31 C 6 7 1 C LED 5 3 5 4 11 2 1 2 15 11 14 5 3 1 24 3 LED LED 3 LED LED...
Page 161: ...161 5 1 2 3 4 5 6 7 11 43 C 15 C 14 15 C 3...
Page 162: ...162 1 2 3 4 100 E4...
Page 163: ...163 1 10 2 1 35...
Page 165: ...165 GWP GWP GW 3 1 3 1 CO2 100 0 8 kW h 60 1 2 3 4 5 Oceanic 2012 19 2012 19...
Page 166: ...166 R290...
Page 167: ...167 LED E2 LED E3 LED E4...
Page 168: ...168 3 R290 GWP 3...
Page 169: ...169...
Page 170: ...170 CO2...
Page 171: ...171...
Page 172: ...172 LFL 25 OFN...
Page 173: ...173...
Page 174: ...174 80...
Page 175: ...175...
Page 176: ...176...
Page 177: ...177 08...
Page 178: ...178 LFL 52 NFO...
Page 179: ...179...
Page 180: ...180 2OC...
Page 181: ...181 3 3 PWG 092R...
Page 182: ...182 2E 3E 4E...
Page 183: ...183 1 2 3 4 cinaecO 5 UE 91 2102 UE 91 2102 EEEW 092R...
Page 185: ...185 2 1 53 5...
Page 186: ...186 2 3 4 001 4E 1 01...
Page 187: ...187 3 5 1 2 3 5 4 6 7 11 34 51 41 51 3 1...
Page 188: ...188 01 4 1 1 2 13 51 7 6 1 7 6 5 5 3 11 4 2 1 2 51 41 11 5 42 1 3 3...
Page 189: ...189 C 3 5202RC 1 2 3 A 1 4 1 51 11 01 42 42 11 41 6 8...
Page 190: ...190 06 1 2 B 1 2 3 4...
Page 191: ...191 0002 LS SDNERT B B 42 A...
Page 192: ...192 1 2 3 4 5 6 7 8 05 51 3 052 F o T 2 4 2 2 09 092R...
Page 193: ...193 ASEFU 1 2 3 4 5 6 7 8 1 2 3 4 5 1 2 3 4 5 6 7 8 9 01 11 21 31 41 51...
Page 198: ...198 B B TRENDS S L B B TRENDS S L EC 44 1999 B B TRENDS S L B B TRENDS S L...