background image

 

The inverter compressor compresses the refrigerant gas and discharges high-

temperature, high-pressure refrigerant gas.

 

In the case of air-cooled refrigeration, the high-temperature, high-pressure refrigerant gas is 

cooled down by inverter fan ventilation in the air-cooled condenser, where it is then liquefied.

 

The liquefied high-pressure refrigerant gas expands and its temperature lowers when it 

passes through expansion valve A, where it vaporizes after receiving heat from the 

circulating fluid in the evaporator.

 

The vaporized refrigerant gas is sucked into the inverter compressor and compressed again.

 

When heating the circulating fluid, the high-pressure, high-temperature refrigerant gas 

is bypassed into the evaporator by expansion valve B to heat the circulating fluid.

 

After the circulating fluid discharged from the inverter pump is heated or cooled by 

the user’s equipment, it returns to the tank.

 

The circulating fluid is sent to the evaporator by the inverter pump, and is 

controlled to a set temperature by the refrigeration circuit, to be discharged to the 

user’s equipment side again by the thermo-chiller.

Refrigeration circuit

Circulating fluid circuit

The combination of inverter control of the 

compressor and fan, and the precise 

control of expansion valves A and B 

realizes energy saving operation without 

waste and high temperature stability.

Adjusting the 

discharge 

pressure by 

pump inverter 

control eliminates 

wasteful discharge of 

the circulating fluid and 

realizes energy saving 

operation.

Since the refrigeration circuit is controlled 

by the signals from 2 temperature sensors 

(for return and discharge), precise 

temperature control of the circulating fluid 

can be achieved. Therefore, there is no need for a 

tank with a large capacity to absorb the circulating 

fluid temperature difference, as high temperature 

stability can be achieved even with a small-size tank. 

This also contributes to space saving.

One compressor controls 

2 channels which realize 

the independent 

temperature control of 2 

systems.

Ventilation

Inverter

fan

Inverter 

compressor

Inverter 

pump

Temperature

sensor

Temperature

sensor

Temperature

sensor

Pump

Expansion valve B

Expansion valve B

Expansion valve A

Expansion valve A

Pump

CH2

CH1

(Optical 

system)

(Oscillator)

Temperature of 

CH1: Oscillator

 and 

CH2: Optical system

 is controlled individually.

One compressor controls 2 channels.

POINT

POINT

POINT

POINT

By controlling the inverter compressor, inverter 

fan, and electronic expansion valve simultaneous-

ly, it maintains the good temperature stability when 

the heat load fluctuates.

Outdoor air temperature: 32°C

Circulating fluid temperature setting:  20°C/25°C (CH1/CH2)

Heat load in the user’s equipment:  26 kW/1 kW (CH1/CH2)

Power supply: 200 V 60 Hz

Circulating fluid flow rate:  125 LPM/10 LPM (CH1/CH2)

External piping: Bypass  Heat load

  For HRL300-A-20

Temperature stability: 

±

0.1

°

C (CH1) 

When a load is stable

Pressure sensor

Pressure sensor

Pressure

sensor

Pressure

sensor

Circulating 

fluid outlet

Circulating 

fluid outlet

Particle filter

Particle filter

Fan

Air-cooled condenser

Compressor

Refrigerant filter

Heat 

exchanger

Heat 

exchanger

Level 

switch

Level 

switch

Drain port

Drain port

DI sensor

Circulating fluid 

return port

Circulating fluid 

return port

Flow

meter

DI filter

Solenoid 

valve

Bypass 

valve

Bypass 

valve

Temperature

sensor

Temperature

sensor

Temperature sensor

Circulating fluid tempe

rature [

°

C]

Circulating fluid tempe

rature [

°

C]

Heat load fluctuation

When a load

is stable

±

0.1

°

C

When a load

is stable

±

0.5

°

C

26 kW load

0 kW load

17

18

19

20

21

22

0

10

20

30

40

1 kW load

0 kW load

22

23

24

25

26

27

0

10

20

30

40

Time [Minute]

CH1

CH2

Conditions

2

 

Circulating Fluid Temperature Controller

Thermo-chiller 

Dual Channel Refrigerated Thermo-chiller for Lasers

HRL

 Series

Summary of Contents for HRL Series

Page 1: ...Cooling capacity kW 9 19 26 CH1 Oscillator 1 Max 1 5 CH2 Optical system Temperature stability C 0 1 0 5 Set temperature range C 15 to 25 20 to 40 1 1 CH2 CH1 CH2 CH1 HRSH200 HRL200 HRS012 Dual thermo...

Page 2: ...with a general refrigerant circuit that controls the compressor by turning the power ON OFF and with a bypass to the circulating uid circuit 1 For HRL300 A 20 mm Space saving Reduced wiring labor Keep...

Page 3: ...emperature difference as high temperature stability can be achieved even with a small size tank This also contributes to space saving One compressor controls 2 channels which realize the independent t...

Page 4: ...screen Set values can be entered from the touch panel Model Cooling method Cooling capacity Power supply Function Accessories CH1 CH2 HRL100 Air cooled refrigeration 9 kW 1 kW Max 1 5 kW 3 phase 200...

Page 5: ...ssigned for specified type of signals Ex 1 Ex 2 Ex 3 Circulating fluid temperature setting Start and stop Circulating fluid discharge temperature Circulating fluid discharge pressure Run and stop stat...

Page 6: ...perating time of a fan Usage time of a DI filter Usage time of a dustproof filter Operation time of a chiller Improved usability and visibility When any alarm is generated the screen automatically mov...

Page 7: ...option Only 200V as an option HRSH Inverter type 0 1 5 to 35 Outdoor installation IPX4 400V as standard 200V as an option Only 200V as an option HRL Inverter dual type CH1 0 1 15 to 25 9 kW 19 kW 26 k...

Page 8: ...F2 200 Pressure Sensor for General Fluids PSE56 Pressure Sensor Controller PSE200 300 300AC Refer to the Web Catalog for details S Coupler KK Series T TU TH TD TL TLM Material Nylon Polyurethane FEP F...

Page 9: ...ommended External Piping Flow p 14 Cable Specifications p 14 Operation Display Panel p 15 Alarm p 15 Communication Functions p 16 Optional Accessories p 19 Cooling Capacity Calculation Required Coolin...

Page 10: ...PBT POM PU PC PVC EPDM NBR CH2 Stainless steel Alumina ceramic Carbon Fluororesin PP PBT POM PU PVC PPS AS PS EPDM NBR Ion replacement resin Electrical system Power supply 3 phase 200 VAC 50 Hz 3 pha...

Page 11: ...id temperature C Cooling capacity kW 35 30 25 20 15 10 5 0 Ambient temperature 32 C Ambient temperature 45 C Cooling capacity kW Circulating fluid temperature C 0 0 0 5 1 0 1 5 2 0 2 5 3 0 20 30 40 Am...

Page 12: ...r for Lasers Anchor bolt mounting position View A Ventilation air outlet Ventilation air inlet Ventilation air inlet A 677 627 330 10 954 1538 40 or less 715 984 1026 HRL100 A 20 Dimensions For piping...

Page 13: ...Thermo chiller for Lasers HRL Series Anchor bolt mounting position View A 715 40 or less 954 330 10 1538 984 1026 677 627 Ventilation air outlet Ventilation air inlet Ventilation air inlet A HRL200 A...

Page 14: ...r Lasers Anchor bolt mounting position View A Ventilation air outlet Ventilation air inlet 850 40 or less 1079 330 10 1839 1109 1145 750 700 A Ventilation air inlet HRL300 A 20 Dimensions For piping p...

Page 15: ...0 VAC 60 Hz M5 R5 5 5 4 cores x 5 5 mm2 4 cores x AWG 10 including grounding cable 30 30 HRL200 A 20 R8 5 4 cores x 8 mm2 4 cores x AWG 8 including grounding cable 40 HRL300 A 20 50 An example of the...

Page 16: ...normal rise of circulating uid temperature AL10 CH1 High Temp CH1 circulating uid temperature rise AL11 CH1 Low Temp CH1 circulating uid temperature drop AL12 CH1 TEMP READY Alarm CH1 TEMP READY alarm...

Page 17: ...make sure that the total load current is 200 mA or less User s system side To the thermo chiller 24 VDC 15 V 100 ANALOG COM 24 COM 1 24 COM 24 VDC Output 4 7 k 4 7 k 4 7 k 15 V 15 V 100 15 V ANALOG C...

Page 18: ...11 Analog output signal 1 Output CH2 circulating fluid temperature 1 12 None Cannot be connected 3 13 None Cannot be connected 3 14 24 COM output Common of contact input signal Output 15 Common of con...

Page 19: ...his product 31st slave SD SD SG 2 SD 7 SD 5 SG This product 1st slave 2 SD 7 SD 5 SG 2 SD 7 SD 5 SG Do not connect with other pins Standards RS 232C Circuit diagram One thermo chiller for one master M...

Page 20: ...ed per unit HRS S0214 Dustproof lter Upper 1 For HRL100 200 A 2 pcs are used per unit HRS S0185 Dustproof lter 1 For HRL300 A 4 pcs are used per unit HRS PF006 Particle lter element 1 Common to each m...

Page 21: ...60 s min 1 Refer to page 21 for the typical physical property value of tap water or other circulating uids Q qm x C x T2 T1 19535 J s 19535 W 19 5 kW Cooling capacity Considering a safety factor of 20...

Page 22: ...pump capacity curves Check beforehand if the circulating uid pipings or circulating uid circuit of the user s equipment are fully durable against this pressure Circulating Fluid Typical Physical Prop...

Page 23: ...uid are not left inside the pipings During operation Air cooled type 2 C to 45 C 5 In locations where condensation may occur 6 In locations which receive direct sunlight or radiated heat 7 In location...

Page 24: ...enough for it to come out the other side 3 Be careful not to bump the fork to the cover panel or piping ports Transportation Carriage Movement Warning 3 Hanging transportation 1 Crane manipulation and...

Page 25: ...it may become impossible to circulate the circulating uid Proceed with caution Mounting Installation Caution 3 Refer to the Operation Manual for this product and secure an installation space that is...

Page 26: ...system Circulation type Make up water Item Unit Standard value In uence Corrosion Scale generation Standard item pH at 25 C 6 0 to 8 0 Electric conductivity 25 C S cm 100 1 to 300 1 Chloride ion Cl m...

Page 27: ...Caution If operating in the conditions below the protection circuit will activate and an operation may not be performed or will stop Power supply voltage is not within the rated voltage range of 10 I...

Page 28: ...r in a place exposed to direct sunlight 2 Installation on equipment in conjunction with atomic energy railways air navigation space shipping vehicles military medical treatment combustion and recreati...

Reviews: