Chapter 17
| General IP Routing
IP Routing and Switching
–
523
–
If the destination belongs to a different subnet on this switch, the packet can be
routed directly to the destination node. However, if the packet belongs to a subnet
not included on this switch, then the packet should be sent to the next hop router
(with the MAC address of the router itself used as the destination MAC address, and
the destination IP address of the destination node). The router will then forward the
packet to the destination node through the correct path. The router can also use
the ARP protocol to find out the MAC address of the destination node of the next
hop router as necessary.
Note:
In order to perform IP switching, the switch should be recognized by other
network nodes as an IP router, either by setting it as the default gateway or by
redirection from another router via the ICMP process.
When the switch receives an IP packet addressed to its own MAC address, the
packet follows the Layer 3 routing process. The destination IP address is checked
against the Layer 3 address table. If the address is not already there, the switch
broadcasts an ARP packet to all the ports on the destination VLAN to find out the
destination MAC address. After the MAC address is discovered, the packet is
reformatted and sent out to the destination. The reformat process includes
decreasing the Time-To-Live (TTL) field of the IP header, recalculating the IP header
checksum, and replacing the destination MAC address with either the MAC address
of the destination node or that of the next hop router.
When another packet destined to the same node arrives, the destination MAC can
be retrieved directly from the Layer 3 address table; the packet is then reformatted
and sent out the destination port. IP switching can be done at wire-speed when the
destination address entry is already in the Layer 3 address table.
If the switch determines that a frame must be routed, the route is calculated only
during setup. Once the route has been determined, all packets in the current flow
are simply switched or forwarded across the chosen path. This takes advantage of
the high throughput and low latency of switching by enabling the traffic to bypass
the routing engine once the path calculation has been performed.
Routing Path
Management
Routing Path Management involves the determination and updating of all the
routing information required for packet forwarding, including:
◆
Updating the routing table
◆
Updating the Layer 3 switching database
Routing Protocols
The switch supports static routing.
◆
Static routing requires routing information to be stored in the switch either
manually or when a connection is set up by an application outside the switch.
Summary of Contents for GEL-5261
Page 14: ...14 Contents Glossary 551 Index 559...
Page 26: ...26 Figures...
Page 30: ...30 Section I Getting Started...
Page 42: ...42 Section II Web Configuration IP Services on page 527...
Page 45: ...Chapter 2 Using the Web Interface NavigatingtheWebBrowserInterface 45 Figure 1 Dashboard...
Page 62: ...62 Chapter 2 Using the Web Interface NavigatingtheWebBrowserInterface...
Page 180: ...Chapter 6 Address Table Settings Issuing MAC Address Traps 180...
Page 208: ...Chapter 8 Congestion Control Storm Control 208 Figure 121 Configuring Storm Control...
Page 228: ...228 Chapter 10 Quality of Service Attaching a Policy Map to a Port...
Page 332: ...Chapter 12 Security Measures ARP Inspection 332 Figure 207 Displaying the ARP Inspection Log...
Page 436: ...Chapter 13 Basic Administration Protocols LBD Configuration 436...
Page 488: ...488 Chapter 14 Multicast Filtering Filtering MLD Query Packets on an Interface...
Page 498: ...Chapter 15 IP Tools Address Resolution Protocol 498...
Page 517: ...517 Chapter 16 IP Configuration Setting the Switch s IP Address IP Version 6 interface...
Page 542: ...540 Section III Appendices...
Page 560: ...Glossary 558...
Page 570: ...568 Index E062017 ST R01...