background image

Page 12

TABLE 4

R−410A Temperature (°F) − Pressure (Psig)

°F

Psig

°F

Psig

°F

Psig

°F

Psig

32

100.8

63

178.5

94

290.8

125

445.9

33

102.9

64

181.6

95

295.1

126

451.8

34

105.0

65

184.3

96

299.4

127

457.6

35

107.1

66

187.7

97

303.8

128

463.5

36

109.2

67

190.9

98

308.2

129

469.5

37

111.4

68

194.1

99

312.7

130

475.6

38

113.6

69

197.3

100

317.2

131

481.6

39

115.8

70

200.6

101

321.8

132

487.8

40

118.0

71

203.9

102

326.4

133

494.0

41

120.3

72

207.2

103

331.0

134

500.2

42

122.6

73

210.6

104

335.7

135

506.5

43

125.0

74

214.0

105

340.5

136

512.9

44

127.3

75

217.4

106

345.3

137

519.3

45

129.7

76

220.9

107

350.1

138

525.8

46

132.2

77

224.4

108

355.0

139

532.4

47

134.6

78

228.0

109

360.0

140

539.0

48

137.1

79

231.6

110

365.0

141

545.6

49

139.6

80

235.3

111

370.0

142

552.3

50

142.2

81

239.0

112

375.1

143

559.1

51

144.8

82

242.7

113

380.2

144

565.9

52

147.4

83

246.5

114

385.4

145

572.8

53

150.1

84

250.3

115

390.7

146

579.8

54

152.8

85

254.1

116

396.0

147

586.8

55

155.5

86

258.0

117

401.3

148

593.8

56

158.2

87

262.0

118

406.7

149

601.0

57

161.0

88

266.0

119

412.2

150

608.1

58

163.9

89

270.0

120

417.7

151

615.4

59

166.7

90

274.1

121

423.2

152

622.7

60

169.6

91

278.2

122

428.8

153

630.1

61

172.6

92

282.3

123

434.5

154

637.5

62

175.4

93

286.5

124

440.2

155

645.0

4. Subtract the liquid line temperature from the saturation

temperature (according to the chart) to determine the
subcooling value.

5. Compare the subcooling value with those in table 5. If

subcooling value is greater than shown, recover some
refrigerant; if less, add some refrigerant.

TABLE 5

XP13 Subcooling Values for Charging

Saturation Temperature

Liquid Line Temperature

=

Subcooling Value

Model

−018

−024

−030

−036

−037

−042

−048

−060

°F
(°C)*

6

(3.3)

3

(1.7)

7

(3.9)

4

(2.2)

4

(2.2)

5

(2.8)

7

(3.9)

7

(3.9)

*F: +/−1.0°; C: +/−0.5°

Charge Using the Approach Method

Outdoor

Temperature > 65ºF (18ºC) 

The following procedure is intended as a general guide and
is for use on expansion valve systems only. For best results,
indoor temperature should be 70°F (21°C) to 80°F (26°C).
Monitor system pressures while charging.

1. Check the outdoor ambient temperature using a digital

thermometer and record in table 6.

2. Attach high pressure gauge set and operate unit for

several minutes to allow system pressures to stabilize.

3. Compare stabilized pressures with those provided in

table 7, Normal Operating Pressures." Minor varia-
tions in these pressures may be expected due to differ-
ences in installations. Significant differences could
mean that the system is not properly charged or that a
problem exists with some component in the system.
Pressures higher than those listed indicate that the sys-
tem is overcharged. Pressures lower than those listed
indicate that the system is undercharged. Continue to
check adjusted charge using approach values.

4. Use the same digital thermometer used to check out-

door ambient temperature to check liquid line tempera-
ture and record in table 6. Verify the unit charge using
the approach method. The difference between the am-
bient and liquid temperatures should match values giv-
en in table 6. Add refrigerant to lower the approach tem-
perature and remove it to increase the approach tem-
perature. Loss of charge results in low capacity and ef-
ficiency.

5. If the values do not agree with those in table 6, add re-

frigerant to lower the approach temperature or recover
refrigerant from the system to increase the approach
temperature.

TABLE 6

XP13 Approach Values for Charging

Liquid Line Temperature

Outdoor Temperature

=

Approach Temperature

Model

−018

−024

−030

−036

−037

−042

−048

−060

°F (°C)*

7

(3.9)

11

(6)

11

(6)

15

(8.3)

12

(6.7)

11

(6)

9 (5)

12

(6.7)

NOTE − For best results, use the same electronic thermometer to
check both outdoor-ambient and liquid-line temperatures.

*F: +/−1.0°; C: +/−0.5°

Summary of Contents for Elite XP13018

Page 1: ...RNING Warranty will be voided if covered equipment is re moved from original installation site Warranty will not cover damage or defect resulting from Flood wind lightning or installation and opera ti...

Page 2: ...230V 208 230V 208 230V 3 Maximum overcurrent protection amps 20 30 30 35 35 40 50 60 2 Minimum circuit ampacity 11 9 17 5 18 4 21 6 21 9 23 2 28 9 34 6 Compressor Rated load amps 8 97 13 46 14 1 16 6...

Page 3: ...1 OUTDOOR FAN COMPRESSOR HIGH PRESSURE SWITCH REVERSING VALVE FILTER DRIER CONTROL BOX EXPANSION VALVE VAPOR LINE SERVICE VALVE LIQUID LINE SERVICE VALVE A Control Box Figure 2 XP13 units are not equi...

Page 4: ...the TEST position at power up the control will ignore the test pins When the jumper is placed across the TEST pins for two seconds the control will enter the defrost mode If the jumper is removed befo...

Page 5: ...TION CROSS SECTION OF SCROLLS TIPS SEALED BY DISCHARGE PRESSURE DISCHARGE PRESSURE The counterclockwise orbiting scroll draws gas into the outer crescent shaped gas pocket created by the two scrolls f...

Page 6: ...oving the four screws securing the fan assembly See figure9 The grill fan assembly can be removed from the cabinet as one piece See figure 10 The condenser fan motor is removed from the fan guard by r...

Page 7: ...pole single throw high pressure switch is located in the liquid line This switch shuts off the compres sor when liquid line pressure rises above the factory setting The switch is normally closed and i...

Page 8: ...ON OF REFRIGERANT FLOW SERVICE PORT SUCTION EXPANSION CHECK VALVE INDOOR UNIT OUTDOOR UNIT LIQUID LINE SERVICE PORT GAUGE MANIFOLD INTERNAL COMPRESSOR LIMIT DISTRIBUTOR INDOOR COIL COIL SENSOR FIGURE...

Page 9: ...ation and serves as the primary leak seal To Access Schrader Port 1 Remove service port cap with an adjustable wrench 2 Connect gauge to the service port 3 When testing is complete replace service por...

Page 10: ...only 3 Open the high pressure side of the manifold to allow the R 410A into the line set and indoor unit Weigh in a trace amount of R 410A A trace amount is a maximum of 2 ounces 57 g or 3 pounds 31 k...

Page 11: ...urn the pump on and continue to evacuate the line set and indoor unit until the absolute pressure does not rise above 500 microns 29 9 inches of mercury within a 20 minute period after shutting off th...

Page 12: ...5 Charge Using the Approach Method Outdoor Temperature 65 F 18 C The following procedure is intended as a general guide and is for use on expansion valve systems only For best results indoor temperatu...

Page 13: ...0A refriger ant absorb moisture very quickly It is very impor tant that the refrigerant system be kept closed as much as possible DO NOT remove line set caps or service valve stub caps until you are r...

Page 14: ...the coil to determine the correct blower CFM Refer to the unit information service manual for pressure drop tables and procedure 3 Belt Drive Blowers Check belt for wear and proper ten sion 4 Check a...

Page 15: ...Page 15 VIII WIRING DIAGRAM AND SEQUENCE OF OPERATION 5 6 1 2 4 3 3 6...

Page 16: ...tdoor fan motor B4 are de energized and stop immediately Terminal O is de energized when indoor room thermo stat is out of cooling mode de energizing the reversing valve L1 Heating demand initiates at...

Reviews: