Infineon CoolGaN Manual Download Page 3

  

Application Note 

3 of 23 

V 1.1  

                                                                                                                                                                                                                                                                     2020-11-09  

CoolGaN™ 600 V half-bridge evaluation platform featuring GaN 
EiceDRIVER™ 

  

Introduction 

   

1

 

Introduction 

This 600 V gallium nitride (GaN) half-bridge evaluation board enables easy, rapid setup and test of CoolGaN™ 
transistors along with the dedicated GaN EiceDRIVER™ isolated gate driver IC. The generic topology is 
configurable for boost or buck operation, pulse testing or continuous full-power operation. Test points provide 
easy access to connect signals to an oscilloscope for measuring the switching performance of CoolGaN™ 
transistors and gate driver. This board saves the user the time to design their own gate driver and power circuit 
to evaluate GaN power transistors. 

The half-bridge circuit board has a single PWM input intended for connection to a 50 Ω pulse or signal 
generator. Board power comes from a single 5 V supply input, which powers everything including the isolated 
gate driver power supplies. Deadtime between the high and low-side is pre-set to 100 ns, but is adjustable via 
trimpots. An external (user-supplied) inductor connects to the supplied pluggable terminal-block connector. 
The output and bus voltage can range up to 450 V, limited by the capacitor rating. This half-bridge can switch 
continuous currents of 12 A, and peak currents of 35 A, hard or soft-switching. Operating frequency can be up to 
several MHz, depending on transistor dissipation (limited to about 15W per device with appropriate heatsink 
and airflow). 

1.1

 

Evaluation board specifications 

Table 1

 

Evaluation board specifications and limits 

Parameter 

Values 

Unit  Note 

Min.  Typ.  Max. 

V

cc

 input voltage 

4.8 

5.0 

5.2 

 

V

cc

 input current 

50 

100 

250 

mA 

Highest current at maximum frequency 

PWM logic input levels 

 

Standard 5 V TTL levels, 50 Ω terminated 

V

in+

 to V

in-

 

390 

450 

Limited by capacitor voltage ratings 

V

O

 to V

in-

 

 

450 

(There may be ±30 V spikes appearing on Vo) 

Transistor current, DC 

 

 

12 

Keep case temp below 125 °C 

Transistor current, pulse 

 

 

35 

Keep case temp below 125 °C 

Transistor power dissipation 

 

 

15 

With heatsink, airflow to keep T

case

<125 °C 

Operating frequency 

(DC) 

 

MHz 

Within dissipation, temperature limits 

PWM pulse width 

130 

 

∞ 

ns 

With 100 ns deadtime setting 

V

SW

 transition time 

 

 

ns 

8 A load, 10-90 percent rise, fall times 

Gate drive voltage levels 

-8 

 

These are not limits, typical – and + values 

Deadtime adjustment range 

 

180 

ns 

Default setting is 100 ns. If longer deadtime 
is necessary, C11, 21 can be increased, 
thereby extending the adjustment range. 

 

Note:

 

The PCB dimensions are 76x76 mm. 

Summary of Contents for CoolGaN

Page 1: ...of EiceDRIVER GaN gate drivers and isolated power supplies for the gate drivers along with input logic that provides adjustable deadtime Using an external inductor the board can be configured for buck...

Page 2: ...mer 6 3 3 Gate drive circuit 7 3 4 Half bridge output circuit 8 4 Setup and use 9 4 1 Test equipment needed 9 4 2 Connections to the terminal block 9 4 2 1 Connections for double pulse testing 10 4 2...

Page 3: ...range up to 450 V limited by the capacitor rating This half bridge can switch continuous currents of 12 A and peak currents of 35 A hard or soft switching Operating frequency can be up to several MHz...

Page 4: ...it Deadtime Circuit Isolated Gate Drive Power Vin Vo Vin PWM 0V Evaluation Board 0 400 V DC Laboratory Power Supply Test Inductor 5 V DC Laboratory Power Supply 50 Pulse Generator Figure 2 Evaluation...

Page 5: ...be set long enough that the high side always fully turns off before the low side turn on with some margin and vice versa A simple adjustable RCD delay circuit generates the deadtime Whenever U11 or U...

Page 6: ...DC DC converter shown in Figure 5 It takes the 5 V input and provides two isolated 8 V outputs VDD1 VSS1 and VDD2 VSS2 A small transformer T1 provides low capacitance isolation and voltage scaling Th...

Page 7: ...e gate RC network described in the datasheet consists of Rx4 Cx4 and Rx5 The small Schottky diode Dx5 provides a low impedance return path for faster gate turnoff effectively bypassing Rx4 Note that t...

Page 8: ...wer supply Attention Normally the bus capacitor is discharged when the lab power supply is switched off But if the power connector is removed while the capacitor is charged not recommended the bus cap...

Page 9: ...a conventional BNC connector you will need a BNC male to MMCX plug cable Fairview Microwave FMC0809315 or a BNC to MMCX adapter Oscilloscope for measurement Due to the fast transient voltage and curre...

Page 10: ...external inductor is connected between Vsw and Vo terminals the circuit is configured as a buck converter If a PWM signal is applied to the PWM input the output voltage will be proportional to the in...

Page 11: ...nductor 5 V DC Laboratory Power Supply 50 Pulse Generator DC Load Figure 9 Connecting the evaluation board in the buck topology Figure 10 shows example waveforms operating in ZVS buck mode at 1 5 MHz...

Page 12: ...V to zero there is a large change in Crss and thus a significant charge injected into the gate approximately 3 nC This charge in a short time I dq dt results in a short current spike that pulls the ga...

Page 13: ...this signal is delayed from TP4 by the deadtime circuit so it has an exponential risetime characteristic Voltage level is standard 5 V AHCT logic level TP1 High side gate voltage signal is the gate of...

Page 14: ...e rising edge of PWM To verify and adjust deadtime connect a 5 V DC supply to the 5 V input on the eval board and connect a pulse generator to the PWM input J1 refer to section 4 3 Set the generator f...

Page 15: ...ly the rising and falling edge deadtimes are set to the same value Turning the trimpots clockwise increases the deadtime Figure 13 Measuring deadtime on the falling edge of PWM 4 7 Test inductor recom...

Page 16: ...zero reverse recovery characteristic Double pulse testing is typically done 1 burst at a time not continuously in order to keep power dissipation low even when testing to the voltage and current limit...

Page 17: ...gh side transistor operating in 3rd quardrant conduction mode You can see the switch node voltage rises several volts above the bus during deadtime due to the effective diode drop across the high side...

Page 18: ...form featuring GaN EiceDRIVER Complete schematic 5 Complete schematic Note Part numbers 1 9 are in the ouput power stage 1x part numbers belong to the high side gate drive 2x are low side gate drive a...

Page 19: ...ng GaN EiceDRIVER PCB layout 6 PCB layout The evaluation board is 1 6 mm thick with 4 evenly spaced copper layers 35 m thick The layer stackup is depicted below Figure 16 Top layer copper layer with t...

Page 20: ...11 09 CoolGaN 600 V half bridge evaluation platform featuring GaN EiceDRIVER PCB layout Figure 18 Lower middle copper layer with top and bottom component overlay Figure 19 Bottom copper layer with bot...

Page 21: ...3 D14 D24 LED GREEN CLEAR 0805 SMD J1 CONN MMCX JACK STR 50 OHM SMD Q1 Q2 Infineon IGOT60R070D1 CoolGaN Transistor R1 R2 RES SMD 499K OHM 1 1W 2512 R11 R21 TRIMMER 1k OHM 0 125W SMD R12 R15 R22 R25 RE...

Page 22: ...aN EiceDRIVER Revision history 8 Revision history Document version Date of release Description of changes V 1 0 2019 01 16 First release V 1 1 2020 11 09 Updates for version B of the driver IC updated...

Page 23: ...intellectual property rights of any third party with respect to any and all information given in this application note The data contained in this document is exclusively intended for technically trai...

Reviews: