background image

2. On machine side, connect cable shield to an earthed machine part.

8.8.3

[X2], Encoder interface 1

The encoder interface [X2] is located on the front of the device. The encoder inter­
face [X2] primarily serves to connect the position sensor integrated into the
motor. 

Supported standards/protocols 

Supported encoders

Hiperface

SEK/SEL 37
SKS/SKM 36

EnDat 2.2

ECI 1118/EBI 1135
ECI 1119/EQI 1131
ECN 1113/EQN 1125
ECN 1123/EQN 1135

EnDat 2.1

Only in connection with Festo motors from the
series EMMS­AS that have an integrated encoder
with EnDat 2.1 protocol

Digital incremental encoders with square­wave
signals and with RS422­compatible signal output
(differential A, B, N signals) 

ROD 426 or compatible

Analogue SIN/COS incremental encoders with
differential analogue signals with 1 V

ss

HEIDENHAIN LS 187/LS 487 (20 µm signal peri­
od) or compatible

Position sensor with asynchronous two­wire
communication interface (RS485)

Nikon MAR­M50A or compatible (18 bit data
frames)

Tab. 19 Supported standards and protocols of the encoder interface [X2]

NOTICE!

Damage to the sensor when sensor type is changed.

The servo drive can provide 5 V or 10 V sensor supply. Through configuration of
the sensor, the supply voltage is established for the sensor. The sensor can be
damaged if the configuration is not adjusted before connection of another sensor
type.

When changing the sensor type: Comply with specified steps.

Change of encoder type

1. Disconnect encoder from the device.
2. Set up and configure new encoder type in the CMMT­AS.
3. Save settings in the CMMT­AS.
4. Switch off CMMT­AS.
5. Connect new encoder type.
6. Switch CMMT­AS back on.

Requirements for the connecting cable

Characteristics

Encoder cable for servo drives, shielded

Optical shield cover 

>

 85 %

Separately twisted signal pairs

Recommended design: (4 x (2 x
0.25 mm

2

))

1)

Max. cable length

50 m

1) In the case of encoders with no compensation for voltage drops or in the case of very long cables, thicker

supply cables may be required.

Tab. 20 Requirements for the connecting cable

Shield connection requirements

Connecting the encoder cable shield

1. On the device side, connect the encoder cable shield to the plug housing.
2. On the motor side, connect the encoder cable shield to the encoder or

encoder plug.

8.8.4

[X3], Encoder interface 2

The encoder interface [X3] is located on the front of the device. The encoder inter­
face [X3] primarily serves to connect a second position sensor to the axis (e.g. to
enable precise positioning control for the axis or as a redundant measuring sys­
tem for safe motion monitoring).

Supported standards/protocols 

Supported encoders

Digital incremental encoders with square­wave
signals and with RS422­compatible signal out­
puts (differential A, B, N signals) 

ROD 426 or compatible
ELGO LMIX 22

Analogue SIN/COS incremental encoders with
differential analogue signals with 1 V

ss

HEIDENHAIN LS 187/LS 487 (20 µm signal peri­
od) or compatible

Tab. 21 Standards and protocols supported by the encoder interface [X3]
[X3] is designed to be electrically compatible with [X2] but does not support all
encoders and functions like [X2].

8.8.5

[X10], SYNC IN/OUT

The interface [X10] is located on the front of the device. The interface [X10] per­
mits master­slave coupling. In the master­slave coupling, the axes of several
devices (slave axes) are synchronised via a device (master axis). The SYNC inter­
face can be configured for different functions and can be used as follows:

Possible functions

Description

Incremental encoder output

Output of a master axis that emulates encoder
signals (encoder emulation)

Incremental encoder input

Input of a slave axis for receiving the encoder
signals of a master axis

Pulse direction input

Input of a slave axis for receiving the pulse direc­
tion signals or count signals containing up­
count/down­count pulses

Tab. 22 Possible functions of the connection [X10]

Requirements for the connecting cable

Characteristics

Encoder cable for servo drives, shielded

Optical shield cover 

>

 85 %

Separately twisted signal pairs

Recommended design: (4 x (2 x 0.25 mm

2

))

Max. cable length

3 m

Tab. 23 Requirements for the connecting cable

Shield connection requirements

Connect the connecting cable shield to the plug housings on both sides.

Possible connections

Connection possibilities

Description

Direct connection of 2 devices

2 devices can be connected directly with a patch
cable (point­to­point connection). 
Recommendation: Use patch cable of category
Cat 5e; maximum length: 25 cm

Connection of several devices via RJ45 T adapter
and patch cables

A maximum of 16 devices may be connected.
Recommendation: Use T adapter and patch
cables of category Cat 5e; maximum length per
cable: 25 cm

Connection of several devices via patch cables
and a connector box (accessories

è

 www.festo.com/catalogue)

A maximum of 16 devices may be connected.
Recommendation: Use patch cables of category
Cat 5e, maximum length per cable: 100 cm

Tab. 24 Connection possibilities

8.8.6

[X18], Standard Ethernet

The interface [X18] is located on the front of the device. The following can be per­
formed via the interface [X18] using the commissioning software:

Diagnostics

Parameterisation

Control

Firmware update

The interface is designed to conform to the standard IEEE 802.3. The interface is
electrically isolated and intended for use with limited cable lengths

è

 Tab. 25 Requirements for the connecting cable. For this reason, the insulation

coordination approach differs from IEEE 802.3 and must conform instead to the
applicable product standard IEC 61800­5­1.

Requirements for the connecting cable

Characteristics

CAT 5, patch cable, double shielded

Max. cable length

30 m

Tab. 25 Requirements for the connecting cable
The following connections are possible via the Ethernet interface:

Connections

Description

Point­to­point connection

The device is connected directly to the PC via an
Ethernet cable.

Network connection

The device is connected to an Ethernet network.

Tab. 26 Options for connection
The device supports the following methods of IP configuration (based on IPv4):

Methods

Description

Obtain IP address automatically (DHCP client)

The device obtains its IP configuration from a
DHCP server in your network. This method is
suitable for networks in which a DHCP server
already exists.

Fixed IP configuration

The device uses a fixed IP configuration.
The IP configuration of the device can be per­
manently assigned manually. However, the
device can only be addressed if the assigned IP
configuration matches the IP configuration of the
PC.
Factory setting: 192.168.0.1

Tab. 27 Options for IP configuration

8.8.7

[X19], Real-time Ethernet (RTE) port 1 and port 2

The interface [X19] is located on the top of the device. The interface [X19] permits
RTE communication. The following protocols are supported by the interface [X19],
depending on the product design:

Summary of Contents for CMMT-AS-C2-3A-...-S1 Series

Page 1: ...er s address Made in Germany Manufactured in Germany Tab 2 Product labelling example Warning symbols on the front of the product The following warning symbols are located on the front of the product 1 Attention Hot surface 2 Attention General danger point 3 Attention Dangerous voltage 4 5 minutes wait Fig 1 Warning symbols on the front side of the product example CMMT AS EC General meaning Meaning...

Page 2: ...tion SBC is intended to safely hold the motor and axis in posi tion at standstill The safety sub function SS1 is intended for performing a rapid stop with sub sequent torque switch off 2 2 1 Application areas The device is intended for use in an industrial environment Outside of industrial environments measures may need to be implemented for radio interference sup pression e g in commercial and mi...

Page 3: ...tor in the intermediate circuit if and when required Temperature sensors for monitoring the temperature of the power module and of the air in the device Fan in cooling profile depending on product variant The servo drive features a Real time Ethernet interface for process control Vari ous bus protocols are supported depending on the product design EtherCAT Eth erNet IP or PROFINET The device can b...

Page 4: ...thus unavoidable Check whether safety sub func tion SS1 is better suited to your application SBC may only be used for holding brakes or clamping units which engage in the de energised state Ensure the lines are installed in a protected manner SBC request The safety sub function SBC is requested on 2 channels by simultaneously switch ing off the control voltage at both control inputs SBC A and SBC ...

Page 5: ...devices must be placed closer to the mains supply To enable attachment to the rear panel of the control cabinet the servo drive cooling element has a slot on the top in the shape of a keyhole and an ordinary slot on the bottom Assembly of the servo drive WARNING Danger of burns through hot escaping gases and hot surfaces In case of error incorrect wiring or incorrect polarity of the connections X9...

Page 6: ...he CMMT AS has no integrated fuse at the mains input or in the intermediate cir cuit An external fuse is required at the mains supply of the device A device com pound coupled in the intermediate circuit must be protected by means of a com mon mains fuse Different requirements for mains fuses are specified for cUL approval and CE approval Only use line safety switches and fuses that have the releva...

Page 7: ... with the neces sary experience for setting up and commissioning drive systems including their EMC aspects category C2 devices can be used in the first environment residential area When operating category C2 devices limit values apply to the harmonic cur rents in the mains supply EN 61000 3 2 or EN 61000 3 12 Please check whether this is the case for your facility system As a rule compliance with ...

Page 8: ...ring external components channel 0 15 TRG1 Like TRG0 but channel 1 14 CAP0 Fast input for position detection channel 0 13 CAP1 Like CAP0 but channel 1 12 STO A Control input Safe torque off channel A X1A Pin Function Description 11 STO B Control input Safe torque off channel B 10 SBC A Control input Safe brake control channel A 9 SBC B Control input Safe brake control channel B 8 7 6 5 Reserved do...

Page 9: ...nchronised via a device master axis The SYNC inter face can be configured for different functions and can be used as follows Possible functions Description Incremental encoder output Output of a master axis that emulates encoder signals encoder emulation Incremental encoder input Input of a slave axis for receiving the encoder signals of a master axis Pulse direction input Input of a slave axis fo...

Page 10: ... limit With switching sensors only the upper limit value can be monitored e g with a normally closed contact The limit values and the error reactions can be parameterised X6B Pin Function Description 6 MT Motor temperature negat ive potential 5 MT Motor temperature posit ive potential 4 PE Protective earthing 3 BR Holding brake negative potential 2 BR Holding brake positive potential 1 PE Protecti...

Page 11: ... pressure Tab 35 Tightening torque and clamping range 1 Retaining screws of the shield clamp 2 Motor cable 3 Cutout for fastening cable binders 2x 4 Shield clamp 5 Shield of the motor cable is placed over a large area below the shield clamp Fig 12 Shield clamp of the motor cable Connection of the motor cable shield on the motor side Detailed information on the motor side connection with motor cabl...

Page 12: ... connection X1C Connection Pin Type Identifier Function X1A 9 SBC B Safe brake control channel B X1A 10 DIN SBC A Safe brake control channel A X1A X1A 21 DOUT SBA Safe torque off acknowledge X1C 1 BR EXT Output for connection of an external clamping unit high side switch X1C X1C 5 DOUT GND Ground reference potential X6B 1 PE Protective earthing X6B 2 BR Holding brake positive potential X6B X6B 3 O...

Page 13: ...ance free during its period of use and specified service life The test interval varies from one safety sub function to another STO No test has to be carried out during the period of use but we recom mend evaluating STA whenever the sub function is requested to ensure max imum diagnostic coverage and the highest safety related classification SBC Cyclical test required at least once every 24 h and S...

Page 14: ... ISO 13849 1 PL e PL e PL d Probability of dangerous fail ure per hour in accordance with EN 61508 PFH 1 h 3 70 x 10 11 9 40 x 10 11 5 90 x 10 10 Safety reference data for the safety sub function STO Wiring Without high test pulses without or with STA evaluation With high test pulses and with STA evaluation1 With high test pulses and without STA evalu ation Mean time to dangerous fail ure in accor...

Page 15: ...sed electrical operating area in accordance with IEC 61800 5 1 Chap 3 5 Protection class I Overvoltage category III Degree of contamination 2 Vibration resistance in accordance with IEC 61800 5 1 and EN 61800 2 Shock resistance in accord ance with EN 61800 2 Tab 55 Ambient conditions operation Service life Service life of the device with rated load in S1 operation1 and 40 C ambient temperat ure h ...

Page 16: ...S 3 x 0 Input Output voltage with feeding of nominal voltage and nom inal power VRMS 205 Output frequency Hz 0 599 Duration for maximum cur rent fs 5 Hz s 2 Duration for maximum cur rent at standstill fs 5 Hz minimum cycle time 1 s s 0 2 Tab 60 Power specifications motor connection X6A 15 5 Additional technical data Additional technical data on the product and detailed descriptions of all interfac...

Reviews: