background image

DATALOGIC AUTOMATION - TH-TS series 

 

– INSTRUCTION MANUAL - Rev. 04 - PAGE 8

 

 

 
5.2 - PARAMETERS DESCRIPTION 
 
GROUP “ 

]

SP”  (PARAMETERS RELATIVE TO THE SET POINT): 

These allow the setting of the control Sets and the Sets 
function modes. 
nSP

 – NUMBER OF PROGRAMMABLE SET POINTS: This allows 

definition of the number of Set Points which will be programmed and 
stored (from 1 to 4). 

SPAt

 – ACTIVE SET POINT : If more than one Set Point is stored, 

this allows selection of the active Set Point.  

SP1 - 

SET POINT 1: Value of the Set Point n. 1  

SP2 - 

SET POINT 2: Value of the Set Point n. 2 (it appears if “nSP” 

>2 only) 

SP3 - 

SET POINT 3: Value of the Set Point n. 3 (it appears if “nSP” 

>3 only)  

SP4 - 

SET POINT 4: Value of the Set Point n. 4 (it appears if “nSP” 

=4 only)  

SPLL

 – LOW SET POINT: Lower value programmable as Set Point 

SPHL 

– HIGH SET POINT : Higher value programmable as Set 

Point 

 
GROUP “ 

]

InP” (PARAMETERS RELATIVE TO THE INPUTS):

 

These permit the definition of visualization modes of the 
variable measured by the probe. 
SEnS

 – PROBE TYPE: Depending on model,  it permits to select the 

type of probe : 
- thermocouples: J (J), K (CrAL), S (S) or infrared sensors IRS serie 
with J (Ir.J) or K (Ir.CA) linearization. 
- thermoresistances: Pt100 IEC (Pt1)  
- thermistors PTC KTY81-121 (Ptc) or NTC 103AT-2 (ntc) 

SSC

 – LOW SCALE LIMIT IN EVENT OF INPUT WITH V/I 

SIGNALS  : This is the value the instrument has to visualise when  
the minimum value that can be measured on the scale is present at 
the input. 

FSC

 – HIGH SCALE LIMIT IN EVENT OF INPUT WITH V/I 

SIGNALS  : This is the value the instrument has to visualise when 
the maximum value that can be measured on the scale is present at 
the input. 

dP

 – NUMBER OF DECIMAL FIGURES: It permits to decide if the 

measuring resolution has to be 1 (0), 0.1 (1), 0.01 (2), 0.001 (3). In 
case of Pt100, PTC and NTC temperature probes the allowed 
resolutions are 1° (0) and  0.1° (1). 

Unit

 – TEMPERTURE UNIT OF MEASUREMENT : When the 

temperature is measured by temperature probes, this parameter 
permits definition if the visualisation is expressed as degree 
Centigrade (°C) or Fahrenheit (°F). 

Filt

 – INPUT DIGITAL FILTER : This permits  programming of the 

constant of time of the software filter referring to the measured input 
value (in sec.) in order to reduce noise sensitivity (increasing the 
time of reading). 

OFSt

 – MEASURING OFFSET: Positive or negative Offset which is 

added to the value measured by the probe. 

rot

 – ROTATION OF THE MEASURING STRAIGHT LINE: In this 

way the offset programmed on par. “OFSt” is not constant for all 
measurements. By programming “rot”=1.000, the value “OFSt” is 
simply added to the value read by the probe before visualisation and 
it remains constant for all the measurements. If instead one does not 
want the programmed offset to be constant for all the 
measurements, it is possible to carry out calibration on two desired 
values. 
 In this case, to define the values to be programmed on par. “OFSt” 
and “rot”, it is necessary to enforce the following formulae : 

“rot” = (D2-D1) / (M2-M1)  

“OFSt” = D2 - (“rot” x M2)

 

where: M1 =measured value  1; D1 = visualisation value when the 
instrument measures M1 
M2 =measured value. 2; D2 = visualisation value when the 
instrument measures M2 
It then follows that the instrument will visualise : 

DV = MV x “rot” + 

“OFSt” 

where:  DV = visualised value; MV= measured value 

InE – 

“OPE” FUNCTIONING IN CASE OF MEASUREMENT 

ERROR: This defines the error conditions of the input allowing the 
instrument to give the power programmed on par. “OPE” as output. 
The possibilities are : 
= Or : the condition occurs in case of over-range or probe breakage 
= Ur : the condition occurs in case of under-range or probe breakage 
= Our : the condition occurs in case of over-range or under-range or 
probe breakage 

OPE

 – OUTPUT POWER IN CASE OF MEASUREMENT ERROR: 

This permits setting of the power that the instrument has to give as 
output in case of measurement error.  For the ON/OFF regulators 
the power is calculated considering a cycle time equal to 20 sec. 
 

GROUP “ 

]

 Out” (PARAMETERS RELATIVE TO THE OUTPUTS):

 

They permit to program the outputs functioning. 
O1F

 – FUNCTIONING OF OUTPUT OUT 1: This defines the 

functioning of output OUT 1 as: control output 1 (1.rEG), control 
output 2 (2.rEG), alarm output as normally open (ALno), output 
alarm normally closed (ALnc), output alarm normally closed with led 
reverse indication (ALni), output not used (OFF). 

O2F

 - FUNCTIONING OF OUTPUT OUT 2: Similar to  “O1F” but 

referring to output OUT2. 

 
GROUP  “ 

]

AL1” (PARAMETERS RELATIVE TO ALARM AL1):

 

These permit setting of the process alarm AL1 function. 
OAL1

 – OUTPUT WHERE ALARM AL1 IS ADDRESSED: It defines 

to which output the alarm AL1 has to be addressed. 

AL1t

 – ALARM AL1 TYPE: permits the choice of behaviour for alarm 

A1, by 6 different selections:   
= LoAb – ABSOLUTE LOW ALARM : The alarm is activated when 
the process value goes below the alarm threshold set on parameter 
"AL1". 
= HiAb - ABSOLUTE HIGH ALARM: The alarm is activated when the 
process value goes above the alarm threshold set on parameter 
"AL1". 
= LHAb - ABSOLUTE BAND ALARM: The alarm is activated when 
the process value goes below the alarm threshold set on parameter 
"AL1L" or goes higher than alarm set on parameter "AL1H". 
= LodE – DEVIATION LOW ALARM: The alarm is activated when 
the process value goes below the value [SP + AL1] 
= HidE – DEVIATION HIGH ALARM: The alarm is activated when 
the process value goes above the value [SP + AL1] 
= LHdE – DEVIATION BAND ALARM: The alarm is activated when 
the process value goes below the value [SP + AL1L] or goes above 
the value [SP + AL1H] 

Ab1

 – ALARM AL1 FUNCTION: This permits definition of alarm AL1 

functions, by entering a number between 0 and 15. The number to 
be programmed, that corresponds to the desired function, is 
obtained adding the values reported in the following description : 
ALARM BEHAVIOUR AT SWITCH ON: 
+0 = NORMAL BEHAVIOUR: The alarm is always activated when 
there are alarm conditions. 
+1 = ALARM NOT ACTIVATED AT SWITCH ON: If, at switch on, 
the instrument is in alarm condition, the alarm is not activated. It will 
be activated only when the process value goes beyond and then 
returns to alarm conditions. 
ALARM DELAY:  
+0 = ALARM NOT DELAYED: The alarm is immediately activated 
when the alarm condition occurs. 
+2 = ALARM DELAYED: When the alarm condition occurs, delay 
counting starts as programmed on par. “ALnd” (expressed in sec.) 
and the alarm will be activated only after this time has elapsed. 
ALARM LATCH: :  
+ 0 = ALARM NOT LATCHED: The alarm remains active in alarm 
conditions only. 
+ 4 = ALARM LATCHED: The alarm is active in alarm conditions and 
remains active even if these conditions no longer exist, until the 
correctly programmed key “T” (“USrb”=Aac) has been pushed 
ALARM AKNOWLEDGEMENT: :  
+ 0 = ALARM NOT AKNOWLEDGED: The alarm remains always 
active in alarm conditions. 

Summary of Contents for TH Series

Page 1: ...le to exit by the fast programming mode or it is possible to visualise the alarm thresholds see par 2 3 To exit the fast Set programming it is necessary to push key P after the visualisation of the last Set Point or alternatively if no key is pressed for approx 15 seconds the display will return to normal functioning automatically 2 2 SELECTION OF THE CONTROL STATE AND PARAMETER PROGRAMMING By pus...

Page 2: ... the power supply to the equipment It is also recommended that all the electrical circuits connected to the instrument must be protect properly using devices ex fuses proportionate to the circulating currents It is strongly recommended that cables with proper insulation according to the working voltages and temperatures be used Furthermore the input cable of the probe has to be kept separate from ...

Page 3: ...par Cont nr The Neutral Zone control is used to control plants in which there is an element which causes a positive increase ex Heater humidifier etc and an element which causes a negative increase ex Cooler de humidifier etc The control functions works on the programmed outputs depending on the measurement on the active Set Point SP and on the hysteresis HSEt The control works in the following wa...

Page 4: ...the connected plant in order to calculate the most suitable PID parameters If Auto 1 or Auto 2 and if at the Auto tuning start the condition for the lower process value is not found with Func HEAt than SP SP 2 or higher with Func CooL than SP SP 2 the display will show ErAt and the instrument will be swapped to normal control conditions according to the previously programmed parameters To make the...

Page 5: ...re to set his functioning it s necessary to establish to which output the alarm has to correspond to First of all it s necessary to configure in the parameters group Out the parameters relative to the outputs required as alarm O1F O2F programming the parameter relative to the desired output as follows ALno if the alarm output has to be ON when the alarm is active while it s OFF when the alarm is n...

Page 6: ...ble to the low threshold AL1L while the example of the high alarm is applicable to the high threshold AL1H 4 11 LOOP BREAK ALARM FUNCTION All the parameters referring to the Loop Break alarm function are contained in the group LbA The Loop Break alarm is available on all the instruments which intervenes when for any reason short circuit of a thermocouple thermocouple inversion load interruption th...

Page 7: ...HAb LodE HidE LHdE HiAb OPER 23 Ab1 Alarm AL1 functioning 0 15 0 CONF 24 AL1 Alarm AL1 threshold AL1L AL1H 0 OPER 25 AL1L Low threshold band alarm AL1 or Minimum set alarm AL1 for high or low alarm 1999 AL1H 1999 CONF 26 AL1H High threshold band alarm AL1 or Maximum set alarm AL1 for high or low alarm AL1L 9999 9999 CONF 27 HAL1 Alarm AL1 hysteresis OFF 9999 1 CONF 28 AL1d Activation delay of alar...

Page 8: ...ed value InE OPE FUNCTIONING IN CASE OF MEASUREMENT ERROR This defines the error conditions of the input allowing the instrument to give the power programmed on par OPE as output The possibilities are Or the condition occurs in case of over range or probe breakage Ur the condition occurs in case of under range or probe breakage Our the condition occurs in case of over range or under range or probe...

Page 9: ...tion 4 if it s desired to activate the autotuning automatically at the end of programmed Soft Start cycle The Autotuning will start at the condition that the process value is lower with Func HEAt than SP SP 2 or higher with Func CooL than SP SP 2 OFF Autotuning disabled When it s occurring an Autotuning cycle led AT blinks SELF SELF TUNING ENABLE Parameter used to enable yES or disable no the Self...

Page 10: ...ry to repeat the auto tuning LbA Loop control interrupted Loop break alarm Check the working of probe and actuator and swap the instrument to rEG control ErEP Possible anomaly of the EEPROM memory Push key P In error conditions the instrument provides an output power as programmed on par OPE and activates the desired alarms if the relative parameters ALni have been programmed yES 6 2 CLEANING We r...

Page 11: ... 55 0 150 0 C 67 0 302 0 F NTC 103 AT2 SEnS ntc 50 110 C 58 230 F 50 0 110 0 C 58 0 230 0 F 7 5 MECHANICAL DIMENSIONS PANEL CUT OUT AND MOUNTING mm THT Series For any further information please contact DATALOGIC AUTOMATION Via Lavino 265 40050 Monte S Pietro Bologna Italy Tel 39 051 6765611 Fax 39 051 6759324 www automation datalogic com e mail info automation datalogic com Datalogic and the Datal...

Reviews: