background image

CY7C1541V18, CY7C1556V18
CY7C1543V18, CY7C1545V18

Document Number: 001-05389 Rev. *F

Page 9 of 28

Depth Expansion

The CY7C1543V18 has a port select input for each port. This
enables for easy depth expansion. Both port selects are sampled
on the rising edge of the positive input clock only (K). Each port
select input can deselect the specified port. Deselecting a port
does not affect the other port. All pending transactions (read and
write) are completed before the device is deselected. 

Programmable Impedance

An external resistor, RQ, must be connected between the ZQ pin
on the SRAM and V

SS 

to allow the SRAM to adjust its output

driver impedance. The value of RQ must be 5X the value of the
intended line impedance driven by the SRAM, the allowable
range of RQ to guarantee impedance matching with a tolerance
of ±15% is between 175

Ω

 and 350

Ω

with V

DDQ

= 1.5V.  The

output impedance is adjusted every 1024 cycles upon power up
to account for drifts in supply voltage and temperature.

Echo Clocks

Echo clocks are provided on the QDR-II+ to simplify data capture
on high-speed systems. Two echo clocks are generated by the
QDR-II+. CQ is referenced with respect to K and CQ is refer-
enced with respect to K. These are free-running clocks and are
synchronized to the input clock of the QDR-II+. The timing for the
echo clocks is shown in 

Switching Characteristics

 on page 23.

Valid Data Indicator (QVLD)

QVLD is provided on the QDR-II+ to simplify data capture on high
speed systems. The QVLD is generated by the QDR-II+ device
along with data output. This signal is also edge-aligned with the
echo clock and follows the timing of any data pin. This signal is
asserted half a cycle before valid data arrives.

DLL

These chips use a Delay Lock Loop (DLL) that is designed to
function between 120 MHz and the specified maximum clock
frequency. The DLL may be disabled by applying ground to the
DOFF pin. When the DLL is turned off, the device behaves in
QDR-I mode (with 1.0 cycle latency and a longer access time).
For more information, refer to the application note, “DLL Consid-
erations in QDRII/DDRII/QDRII+/DDRII+”. The DLL can also be
reset by slowing or stopping the input clocks K and K for a
minimum of 30ns. However, it is not necessary to reset the DLL
to lock to the desired frequency. During Power up, when the
DOFF is tied HIGH, the DLL is locked after 2048 cycles of stable
clock.

  

Application Example

Figure 1

 shows four QDR-II+ used in an application.

Figure 1.  Application Example

BUS  MASTER

(CPU or ASIC)

DATA IN

DATA OUT

Address

Source K
Source K

Vt

Vt

Vt

R

R

CLKIN/CLKIN

D
A

K

SRAM #4

RQ = 250

ohms

ZQ

CQ/CQ

Q

K

RPS WPS BWS

D
A

K

SRAM #1

RQ = 250

ohms

ZQ

CQ/CQ

Q

K

RPS WPS BWS

RPS

WPS
BWS

R = 50ohms, Vt = V        /2

DDQ

R

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1541V18

Page 1: ...f two separate ports the read port and the write port to access the memory array The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to sup...

Page 2: ...g Reg 16 21 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 20 0 21 2M x 8 Array 2M x 8 Array 2M x 8 Array 8 CQ CQ DOFF Q 7 0 8 QVLD 8 8 8 Write Reg Write Reg Write Reg 2M x 9 Array CLK A 20 0 Gen K...

Page 3: ...8 BWS 1 0 VREF Write Add Decode Write Reg 36 A 19 0 20 1M x 18 Array 1M x 18 Array 1M x 18 Array 18 CQ CQ DOFF Q 17 0 18 QVLD 18 18 18 Write Reg Write Reg Write Reg 512K x 36 Array CLK A 18 0 Gen K K...

Page 4: ...S VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A QVLD A A NC NC NC R TDO TCK A A A NC A A A TMS TDI CY7C1556V18 8M x 9 1 2 3 4 5 6 7 8 9...

Page 5: ...C D0 Q0 R TDO TCK A A A NC A A A TMS TDI CY7C1545V18 4M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M A WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A NC A V...

Page 6: ...is organized as 8M x 8 4 arrays each of 2M x 8 for CY7C1541V18 8M x 9 4 arrays each of 2M x 9 for CY7C1556V18 4M x 18 4 arrays each of 1M x 18 for CY7C1543V18 and 2M x 36 4 arrays each of 512K x 36 f...

Page 7: ...be connected to a pull up through a 10 K or less pull up resistor The device behaves in QDR I mode when the DLL is turned off In this mode the device can be operated at a frequency of up to 167 MHz wi...

Page 8: ...he next rising edge of the positive input clock K This enables for a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operatio...

Page 9: ...e input clock of the QDR II The timing for the echo clocks is shown in Switching Characteristics on page 23 Valid Data Indicator QVLD QVLD is provided on the QDR II to simplify data capture on high sp...

Page 10: ...portion of a write sequence CY7C1541V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1543V18 only the upper byte D 17 9 is written into the device D 8 0 remains...

Page 11: ...e device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Data port...

Page 12: ...be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Controller Block Diagram on page 15 Upon power up the instructio...

Page 13: ...t the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an initial data pattern at the latched parallel outputs of the...

Page 14: ...State Diagram TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN CA...

Page 15: ...Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instruct...

Page 16: ...TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure...

Page 17: ...on Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This o...

Page 18: ...35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M...

Page 19: ...ovide stable power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL...

Page 20: ...GH Voltage Note 19 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 20 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltag...

Page 21: ...e 14 Parameter Description Test Conditions Min Typ Max Unit VIH Input HIGH Voltage VREF 0 2 VDDQ 0 24 V VIL Input LOW Voltage 0 24 VREF 0 2 V Capacitance Tested initially and after any design or proce...

Page 22: ...1 11 82 C W JC Thermal Resistance Junction to Case 2 33 C W Figure 4 AC Test Loads and Waveforms 1 25V 0 25V R 50 5 pF INCLUDING JIG AND SCOPE ALL INPUT PULSES Device RL 50 Z0 50 VREF 0 75V VREF 0 75V...

Page 23: ...ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 26 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 26 rising edge to rising edge 0...

Page 24: ...PS K K DON T CARE UNDEFINED CQ CQ tCQOH CCQO t tCQOH CCQO t tQVLD QVLD tQVLD Read Latency 2 0 Cycles CLZ t t CO tDOH tCQDOH CQD t tCHZ Q00 Q01 Q20 Q02 Q21 Q03 Q22 Q23 tCQH tCQHCQH Q Notes 31 Q00 refer...

Page 25: ...all Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1556V18 375BZI CY7C1543V18 375BZI CY7C1545V18 375BZI CY7C1541V18 375BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Page 26: ...00BZXC CY7C1541V18 300BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1556V18 300BZI CY7C1543V18 300BZI CY7C1545V18 300BZI CY7C1541V18 300BZXI 51 85195 165 Ball Fine P...

Page 27: ...CY7C1545V18 Document Number 001 05389 Rev F Page 27 of 28 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 4 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7 4 G...

Page 28: ...ice to the materials described herein Cypress does not assume any liability arising out of the application or use of any product or circuit described herein Cypress does not authorize its products for...

Reviews: