background image

CY7C1541V18, CY7C1556V18
CY7C1543V18, CY7C1545V18

Document Number: 001-05389 Rev. *F

Page 8 of 28

Functional Overview

The CY7C1541V18, CY7C1556V18, CY7C1543V18, and
CY7C1545V18 are synchronous pipelined burst SRAMs
equipped with a read port and a write port. The read port is
dedicated to read operations and the write port is dedicated to
write operations. Data flows into the SRAM through the write port
and out through the read port. These devices multiplex the
address inputs to minimize the number of address pins required.
By having separate read and write ports, the QDR-II+ completely
eliminates the need to “turn-around” the data bus and avoids any
possible data contention, thereby simplifying system design.
Each access consists of four 8-bit data transfers in the case of
CY7C1541V18, four 9-bit data transfers in the case of
CY7C1556V18, four 18-bit data transfers in the case of
CY7C1543V18, and four 36-bit data transfers in the case of
CY7C1545V18, in two clock cycles. 

Accesses for both ports are initiated on the positive input clock
(K). All synchronous input and output timing are referenced from
the rising edge of the input clocks (K and K).

All synchronous data inputs (D

[x:0]

) pass through input registers

controlled by the input clocks (K and K). All synchronous data
outputs (Q

[x:0]

) outputs pass through output registers controlled

by the rising edge of the input clocks (K and K) as well. 

All synchronous control (RPS, WPS, NWS

[x:0]

,

 

BWS

[x:0]

) inputs

pass through input registers controlled by the rising edge of the
input clocks (K and K). 

CY7C1543V18 is described in the following sections. The same
basic descriptions apply to CY7C1541V18, CY7C1556V18, and
CY7C1545V18.

Read Operations

The CY7C1543V18 is organized internally as four arrays of 1M
x 18. Accesses are completed in a burst of four sequential 18-bit
data words. Read operations are initiated by asserting RPS
active at the rising edge of the positive input clock (K). The
address presented to address inputs are stored in the read
address register. Following the next two K clock rise, the corre-
sponding lowest order 18-bit word of data is driven onto the
Q

[17:0]

 using K as the output timing reference. On the subse-

quent rising edge of K, the next 18-bit data word is driven onto
the Q

[17:0]

. This process continues until all four 18-bit data words

have been driven out onto Q

[17:0]

. The requested data is valid

0.45 ns from the rising edge of the input clock (K or K). To
maintain the internal logic, each read access must be allowed to
complete. Each read access consists of four 18-bit data words
and takes two clock cycles to complete. Therefore, read
accesses to the device cannot be initiated on two consecutive K
clock rises. The internal logic of the device ignores the second
read request. Read accesses can be initiated on every other K
clock rise. Doing so pipelines the data flow such that data is
transferred out of the device on every rising edge of the input
clocks (K and K). 

When the read port is deselected, the CY7C1543V18 first
completes the pending read transactions. Synchronous internal
circuitry automatically tri-states the outputs following the next
rising edge of the positive input clock (K). This enables for a

seamless transition between devices without the insertion of wait
states in a depth expanded memory. 

Write Operations

Write operations are initiated by asserting WPS active at the
rising edge of the positive input cock (K). On the following K clock
rise the data presented to D

[17:0]

 is latched and stored into the

lower 18-bit write data register, provided BWS

[1:0]

 are both

asserted active. On the subsequent rising edge of the negative
input clock (K) the information presented to D

[17:0]

 is also stored

into the write data register, provided BWS

[1:0]

 are both asserted

active. This process continues for one more cycle until four 18-bit
words (a total of 72 bits) of data are stored in the SRAM. The 72
bits of data are then written into the memory array at the specified
location. Therefore, write accesses to the device cannot be
initiated on two consecutive K clock rises. The internal logic of
the device ignores the second write request. Write accesses can
be initiated on every other rising edge of the positive input clock
(K). Doing so pipelines the data flow such that 18 bits of data can
be transferred into the device on every rising edge of the input
clocks (K and K). 

When deselected, the write port ignores all inputs after the
pending write operations have been completed. 

Byte Write Operations

Byte write operations are supported by the CY7C1543V18. A
write operation is initiated as described in the 

Write Operations

section. The bytes that are written are determined by BWS

0

 and

BWS

1

, which are sampled with each set of 18-bit data words.

Asserting the appropriate Byte Write Select input during the data
portion of a write latches the data being presented and writes it
into the device. Deasserting the Byte Write Select input during
the data portion of a write enables the data stored in the device
for that byte to remain unaltered. This feature can be used to
simplify read, modify, or write operations to a byte write
operation.

Concurrent Transactions

The read and write ports on the CY7C1543V18 operate
completely independently of one another. As each port latches
the address inputs on different clock edges, the user can read or
write to any location, regardless of the transaction on the other
port. If the ports access the same location when a read follows a
write in successive clock cycles, the SRAM delivers the most
recent information associated with the specified address
location. This includes forwarding data from a write cycle that
was initiated on the previous K clock rise.

Read access and write access must be scheduled such that one
transaction is initiated on any clock cycle. If both ports are
selected on the same K clock rise, the arbitration depends on the
previous state of the SRAM. If both ports are deselected, the
read port takes priority. If a read was initiated on the previous
cycle, the write port assumes priority (as read operations cannot
be initiated on consecutive cycles). If a write was initiated on the
previous cycle, the read port assumes priority (as write opera-
tions cannot be initiated on consecutive cycles). Therefore,
asserting both port selects active from a deselected state results
in alternating read or write operations being initiated, with the first
access being a read.

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1541V18

Page 1: ...f two separate ports the read port and the write port to access the memory array The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to sup...

Page 2: ...g Reg 16 21 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 20 0 21 2M x 8 Array 2M x 8 Array 2M x 8 Array 8 CQ CQ DOFF Q 7 0 8 QVLD 8 8 8 Write Reg Write Reg Write Reg 2M x 9 Array CLK A 20 0 Gen K...

Page 3: ...8 BWS 1 0 VREF Write Add Decode Write Reg 36 A 19 0 20 1M x 18 Array 1M x 18 Array 1M x 18 Array 18 CQ CQ DOFF Q 17 0 18 QVLD 18 18 18 Write Reg Write Reg Write Reg 512K x 36 Array CLK A 18 0 Gen K K...

Page 4: ...S VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A QVLD A A NC NC NC R TDO TCK A A A NC A A A TMS TDI CY7C1556V18 8M x 9 1 2 3 4 5 6 7 8 9...

Page 5: ...C D0 Q0 R TDO TCK A A A NC A A A TMS TDI CY7C1545V18 4M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M A WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A NC A V...

Page 6: ...is organized as 8M x 8 4 arrays each of 2M x 8 for CY7C1541V18 8M x 9 4 arrays each of 2M x 9 for CY7C1556V18 4M x 18 4 arrays each of 1M x 18 for CY7C1543V18 and 2M x 36 4 arrays each of 512K x 36 f...

Page 7: ...be connected to a pull up through a 10 K or less pull up resistor The device behaves in QDR I mode when the DLL is turned off In this mode the device can be operated at a frequency of up to 167 MHz wi...

Page 8: ...he next rising edge of the positive input clock K This enables for a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operatio...

Page 9: ...e input clock of the QDR II The timing for the echo clocks is shown in Switching Characteristics on page 23 Valid Data Indicator QVLD QVLD is provided on the QDR II to simplify data capture on high sp...

Page 10: ...portion of a write sequence CY7C1541V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1543V18 only the upper byte D 17 9 is written into the device D 8 0 remains...

Page 11: ...e device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Data port...

Page 12: ...be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Controller Block Diagram on page 15 Upon power up the instructio...

Page 13: ...t the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an initial data pattern at the latched parallel outputs of the...

Page 14: ...State Diagram TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN CA...

Page 15: ...Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instruct...

Page 16: ...TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure...

Page 17: ...on Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This o...

Page 18: ...35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M...

Page 19: ...ovide stable power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL...

Page 20: ...GH Voltage Note 19 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 20 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltag...

Page 21: ...e 14 Parameter Description Test Conditions Min Typ Max Unit VIH Input HIGH Voltage VREF 0 2 VDDQ 0 24 V VIL Input LOW Voltage 0 24 VREF 0 2 V Capacitance Tested initially and after any design or proce...

Page 22: ...1 11 82 C W JC Thermal Resistance Junction to Case 2 33 C W Figure 4 AC Test Loads and Waveforms 1 25V 0 25V R 50 5 pF INCLUDING JIG AND SCOPE ALL INPUT PULSES Device RL 50 Z0 50 VREF 0 75V VREF 0 75V...

Page 23: ...ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 26 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 26 rising edge to rising edge 0...

Page 24: ...PS K K DON T CARE UNDEFINED CQ CQ tCQOH CCQO t tCQOH CCQO t tQVLD QVLD tQVLD Read Latency 2 0 Cycles CLZ t t CO tDOH tCQDOH CQD t tCHZ Q00 Q01 Q20 Q02 Q21 Q03 Q22 Q23 tCQH tCQHCQH Q Notes 31 Q00 refer...

Page 25: ...all Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1556V18 375BZI CY7C1543V18 375BZI CY7C1545V18 375BZI CY7C1541V18 375BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Page 26: ...00BZXC CY7C1541V18 300BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1556V18 300BZI CY7C1543V18 300BZI CY7C1545V18 300BZI CY7C1541V18 300BZXI 51 85195 165 Ball Fine P...

Page 27: ...CY7C1545V18 Document Number 001 05389 Rev F Page 27 of 28 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 4 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7 4 G...

Page 28: ...ice to the materials described herein Cypress does not assume any liability arising out of the application or use of any product or circuit described herein Cypress does not authorize its products for...

Reviews: