background image

CY7C1541V18, CY7C1556V18
CY7C1543V18, CY7C1545V18

Document Number: 001-05389 Rev. *F

Page 17 of 28

Identification Register Definitions 

Instruction Field

Value

Description

CY7C1541V18

CY7C1556V18

CY7C1543V18

CY7C1545V18

Revision Number 
(31:29)

000

000

000

000

Version number.

Cypress Device ID 
(28:12)

11010010101000100 11010010101001100 11010010101010100 11010010101100100 Defines the type of 

SRAM.

Cypress JEDEC ID 
(11:1)

00000110100

00000110100

00000110100

00000110100

Allows unique 
identification of 
SRAM vendor.

ID Register 
Presence (0)

1

1

1

1

Indicates  the 
presence of an ID 
register.

Scan Register Sizes 

Register Name

Bit Size

Instruction

3

Bypass

1

ID

32

Boundary Scan

109

Instruction Codes

Instruction

Code

Description

EXTEST

000

Captures the input and output ring contents. 

IDCODE

001

Loads the ID register with the vendor ID code and places the register between TDI and TDO. 
This operation does not affect SRAM operation.

SAMPLE Z

010

Captures the input and output contents. Places the boundary scan register between TDI and 
TDO. Forces all SRAM output drivers to a High-Z state.

RESERVED

011

Do Not Use: This instruction is reserved for future use.

SAMPLE/PRELOAD

100

Captures the input and output ring contents. Places the boundary scan register between TDI 
and TDO. Does not affect the SRAM operation. 

RESERVED

101

Do Not Use: This instruction is reserved for future use.

RESERVED

110

Do Not Use: This instruction is reserved for future use.

BYPASS

111

Places the bypass register between TDI and TDO. This operation does not affect SRAM 
operation.

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1541V18

Page 1: ...f two separate ports the read port and the write port to access the memory array The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to sup...

Page 2: ...g Reg 16 21 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 20 0 21 2M x 8 Array 2M x 8 Array 2M x 8 Array 8 CQ CQ DOFF Q 7 0 8 QVLD 8 8 8 Write Reg Write Reg Write Reg 2M x 9 Array CLK A 20 0 Gen K...

Page 3: ...8 BWS 1 0 VREF Write Add Decode Write Reg 36 A 19 0 20 1M x 18 Array 1M x 18 Array 1M x 18 Array 18 CQ CQ DOFF Q 17 0 18 QVLD 18 18 18 Write Reg Write Reg Write Reg 512K x 36 Array CLK A 18 0 Gen K K...

Page 4: ...S VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A QVLD A A NC NC NC R TDO TCK A A A NC A A A TMS TDI CY7C1556V18 8M x 9 1 2 3 4 5 6 7 8 9...

Page 5: ...C D0 Q0 R TDO TCK A A A NC A A A TMS TDI CY7C1545V18 4M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M A WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A NC A V...

Page 6: ...is organized as 8M x 8 4 arrays each of 2M x 8 for CY7C1541V18 8M x 9 4 arrays each of 2M x 9 for CY7C1556V18 4M x 18 4 arrays each of 1M x 18 for CY7C1543V18 and 2M x 36 4 arrays each of 512K x 36 f...

Page 7: ...be connected to a pull up through a 10 K or less pull up resistor The device behaves in QDR I mode when the DLL is turned off In this mode the device can be operated at a frequency of up to 167 MHz wi...

Page 8: ...he next rising edge of the positive input clock K This enables for a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operatio...

Page 9: ...e input clock of the QDR II The timing for the echo clocks is shown in Switching Characteristics on page 23 Valid Data Indicator QVLD QVLD is provided on the QDR II to simplify data capture on high sp...

Page 10: ...portion of a write sequence CY7C1541V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1543V18 only the upper byte D 17 9 is written into the device D 8 0 remains...

Page 11: ...e device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Data port...

Page 12: ...be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Controller Block Diagram on page 15 Upon power up the instructio...

Page 13: ...t the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an initial data pattern at the latched parallel outputs of the...

Page 14: ...State Diagram TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN CA...

Page 15: ...Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instruct...

Page 16: ...TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure...

Page 17: ...on Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This o...

Page 18: ...35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M...

Page 19: ...ovide stable power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL...

Page 20: ...GH Voltage Note 19 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 20 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltag...

Page 21: ...e 14 Parameter Description Test Conditions Min Typ Max Unit VIH Input HIGH Voltage VREF 0 2 VDDQ 0 24 V VIL Input LOW Voltage 0 24 VREF 0 2 V Capacitance Tested initially and after any design or proce...

Page 22: ...1 11 82 C W JC Thermal Resistance Junction to Case 2 33 C W Figure 4 AC Test Loads and Waveforms 1 25V 0 25V R 50 5 pF INCLUDING JIG AND SCOPE ALL INPUT PULSES Device RL 50 Z0 50 VREF 0 75V VREF 0 75V...

Page 23: ...ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 26 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 26 rising edge to rising edge 0...

Page 24: ...PS K K DON T CARE UNDEFINED CQ CQ tCQOH CCQO t tCQOH CCQO t tQVLD QVLD tQVLD Read Latency 2 0 Cycles CLZ t t CO tDOH tCQDOH CQD t tCHZ Q00 Q01 Q20 Q02 Q21 Q03 Q22 Q23 tCQH tCQHCQH Q Notes 31 Q00 refer...

Page 25: ...all Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1556V18 375BZI CY7C1543V18 375BZI CY7C1545V18 375BZI CY7C1541V18 375BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Page 26: ...00BZXC CY7C1541V18 300BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1556V18 300BZI CY7C1543V18 300BZI CY7C1545V18 300BZI CY7C1541V18 300BZXI 51 85195 165 Ball Fine P...

Page 27: ...CY7C1545V18 Document Number 001 05389 Rev F Page 27 of 28 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 4 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7 4 G...

Page 28: ...ice to the materials described herein Cypress does not assume any liability arising out of the application or use of any product or circuit described herein Cypress does not authorize its products for...

Reviews: